
PROBLEM OF THE MONTH

OCTOBER 2014 - SOLUTION
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You may recall the formula for a finite geometric series which says for x 6= 1:

1 + x+ x2 + x3 + · · ·+ xn−1 =
1− xn

1− x
.

Replacing x by −x3 gives for x 6= 1:

1− x3 + x6 − x9 + · · ·+ (−1)n+1x3n−3 =
1− (−1)nx3n

1 + x3
.

Integrating on [0, 1] gives:
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Next we observe since 0 ≤ x ≤ 1 that:∣∣∣∣∫ 1
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Thus we see by taking limits in (1) that:
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