SOLUTION FOR NOVEMBER 2016

Prove that the polynomial $p(x) = x^3 - 12x^2 + ax - 64$ has all of its roots real and nonnegative for exactly one real number *a*. Determine *a*.

SOLUTION:

$$a = 48$$
 and thus $p(x) = (x - 4)^3$.

Let $p(x) = x^3 - 12x^2 + ax - 64$ and let us assume that p(x) has all of its roots real and nonnegative. So we can write:

$$p(x) = (x - r_1)(x - r_2)(x - r_3)$$
 with $0 \le r_1 \le r_2 \le r_3$.

Multiplying this out and equating coefficients gives:

$$r_1 + r_2 + r_3 = 12, r_1r_2 + r_1r_3 + r_2r_3 = a, r_1r_2r_3 = 64.$$

From the equation $r_1r_2r_3 = 64$ we see that in fact that r_1, r_2, r_3 must be strictly positive and then using this in the equation $r_1r_2 + r_1r_3 + r_2r_3 = a$ implies that a > 0.

Next we see that:

$$p'(x) = 3x^2 - 24x + a$$

If $p'(x) \ge 0$ for all x then p has only one real root and so it must be that $r_1 = r_2 = r_3$ and therefore $3r_1 = 12$ and so $r_1 = r_2 = r_3 = 4$ and thus 48 = 16 + 16 + 16 = a and so we are done in this case. So now suppose p'(x) gets negative. Then since p' is a quadratic then p'(x) = 0 has two real solutions. From the quadratic formula we see that p'(x) = 0 at:

$$4 \pm \sqrt{\frac{48-a}{3}}.$$

Thus we must have $48 - a \ge 0$, i.e. $a \le 48$. Thus we see $0 < a \le 48$. Further p(x) has a local maximum at $4 - \sqrt{\frac{48-a}{3}}$ and a local minimum at $4 + \sqrt{\frac{48-a}{3}}$. Next we rewrite p(x) as:

$$p(x) = (x-4)^3 + (a-48)x.$$

Then we calculate and see that if 0 < a < 48 then:

$$p\left(4 - \sqrt{\frac{48-a}{3}}\right) = \frac{2(48-a)}{3} \left[\sqrt{\frac{48-a}{3}} - 6\right] < 0 \text{ since } 0 < a < 48.$$

Then it follows that p(x) has only one real root and as earlier this implies $r_1 = r_2 = r_3 = 4$ and thus 48 = 16 + 16 + 16 = a. This contradicts that 0 < a < 48 and therefore our assumption that 0 < a < 48 must be false. From earlier we know a > 0 so it must be that $a \ge 48$. From earlier we also know $a \le 48$ therefore it must be that a = 48. This completes the proof.