SOLUTION FOR FEBRUARY 2017 PROBLEM

Let $P = (-3/2, 9/4)$ and let $Q = (3, 9)$. Note that P and Q both lie on $y = x^2$. Let $y = f(x)$ be a continuous function on the interval $[-3/2, 3]$ and suppose the function $f(x)$ lies above the line PQ. Find a point R on the curve $y = x^2$ between P and Q so that the area bounded by $y = f(x)$ and the straight line segments PR and QR is as large as possible.

SOLUTION:

$$
R = (3/4, 9/16).
$$

Correct solutions turned in by: William Liu, Rohit Kopparthy, Isaac Echols, and Karthik Nair.

Denote $R = (x, x^2)$. Let y_1 be the line from PR i.e. let $y_1(t)$ be the line from $P = (-3/2, 9/4)$ to $R = (x, x^2)$. A short computation shows: $y_1(t) = 9/4 + (x - 3/2)(t + 3/2)$ where $-3/2 \le t \le x$. Simlarly, let $y_2(t)$ be the line from R to Q i.e. from (x, x^2) to $(3, 9)$. Then $y_2(t) = 9 + (x+3)(t-3)$ where $x \le t \le 3$. We want to find the maximum of the function:

$$
A(x) = \int_{-3/2}^{x} [f(t) - y_1(t)] dt + \int_{x}^{3} [f(t) - y_2(t)] dt.
$$

Notice we may rewrite this as:

$$
A(x) = \int_{-3/2}^{3} f(t) - \left(\int_{-3/2}^{x} y_1(t) dt + \int_{x}^{3} y_2(t) dt \right).
$$

Since the first integral is a constant and does not depend on x we see that the maximum of $A(x)$ occurs at the *minimum* of:

$$
B(x) = \int_{-3/2}^{x} y_1(t) dt + \int_{x}^{3} y_2(t) dt.
$$

It is now straightforward to show:

$$
\int_{-3/2}^{x} y_1(t) dt = (1/2)x^3 + (3/4)x^2 + (9/8)x + (27/16)
$$

and:

$$
\int_x^9 y_2(t) dt = -(1/2)x^3 + (3/2)x^2 - (9/2)x + (27/2).
$$

Thus:

$$
B(x) = (9/4)x^2 - (27/8)x + (243/16).
$$

This is a parabola and the minimum occurs when $B'(x) = 0$ i.e. when $(9/2)x - (27/8) = 0$. Thus $x = 3/4$ and hence $x^2 = 9/16$.