SOLUTION FOR MARCH 2017 PROBLEM

SOLUTION:

128462

We begin with:

		Μ	А	J	Ο	R
	+	Μ	Ι	Ν	Ο	R
=	\mathbf{R}	Е	\mathbf{S}	U	Μ	F

We first see from the second column that M + M is an even number between 0 and 18 so either R = 0 or R = 1. But $R \neq 0$ for if R = 0 then the sixth column would give E = 0 but $E \neq R$. Thus R = 1. Then from the sixth column we see E = 2. From the first and second column we see that M + M = 12 so M = 6. From the fifth column we see that either O = 3 or O = 8.

CASE 1: O = 3

If O = 3 then the remaining digits are 0, 4, 5, 7, 8, 9 and we have:

		6	А	J	3	1
	+	6	Ι	Ν	3	1
=	1	2	\mathbf{S}	U	6	2

Next one possibility is J + N = U and A + I = S. However notice that $S \neq 0$ and $U \neq 0$. Also notice that $J \neq 0$ for if so then N = U but different letters correspond to different numbers. Similarly $N \neq 0$, $A \neq 0$, and $I \neq 0$.

Thus we see that J + N is greater than or equal to 10 and so we get J + N - 10 = U. Since $J + N \ge 10$ then we see that the other equation must be 1 + A + I = S. So our two remaining equations are:

$$J + N = U + 10$$
$$A + I = S - 1.$$

Next we notice $J \neq 0$ for if J = 0 then N = U + 10 but $0 \le N \le 9$ and $U + 10 \ge 10$. Similarly $N \neq 0$ and $S \neq 0$. Thus either A = 0 or I = 0.

SUBCASE i: A = 0

If A = 0 then we have:

$$J + N = U + 10$$
$$1 + I = S$$

and the remaining digits are: 4, 5, 7, 8, 9. This forces U = 4, 5, or 7. (If U = 9 then J + N = 19 but among the numbers 0, 4, 5, 7, 8 no two of these sum to 19 so $U \neq 9$. Similarly $U \neq 8$).

If U = 4 then J and N need to be 5 and 9 (or vice versa). This leaves 7 and 8 for I and S which forces S = 8 and I = 7. Thus we end up with RESUME= 128462.

If U = 5 then J and N need to be 7 and 8 (or vice versa). This leaves 4 and 9 and 1 + I = S which is impossible.

If U = 7 then J and N need to be 8 and 9 (or vice versa). Thus we see I = 4 and S = 5 which gives RESUME=125762.

SUBCASE ii: I = 0

A similar analysis yields U = 4, 5, or 7 and again the largest number we obtain for RESUME is 128462.

CASE 2: O = 8

If O = 8 then the remaining digits are 0, 3, 4, 5, 7, 9 and we have:

This leave two cases.

SUBCASE i:

$$J + N + 1 = U$$
$$A + I = S$$

Now the only way for RESUME to be larger than 128462 is for S = 9 so we try to rule out this possibility. If S = 9 then we see that A = 4 and I = 5 (or vice versa). This leaves the digits 0,3 and 7 and J + N + 1 = U which is impossible.

SUBCASE ii:

$$J + N + 1 = U + 10$$
$$A + I + 1 = S.$$

Similarly we try to rule out S = 9. If S = 9 then we see that A = 3 and I = 5 (or vice versa). This leaves the digits 0, 4, 7 and J + N = U + 9 which is again impossible.

Thus the largest number for RESUME is 128462.