SOLUTION FOR APRIL 2019

Correct solutions were submitted by:

Rhythm Garg Jingyi Dai Eduardo Luna

Solution: Let:

$$xy = z + w$$

$$zw = x + y$$
.

x, y, z, w positive integers

Suppose $x \geq y, z \geq w$ and $x \geq z$. Then since $y \geq 1$ we have from first eq

$$xy \le 2x$$

therefore $y \le 2$. Since y > 0 then either y = 1 or y = 2. If y = 2 then we end up with (2z - 1)(2w - 1) = 9. Since $z \ge w$ we get 2z - 1 = 9 and 2w - 1 = 1 OR 2z - 1 = 2w - 1 = 3. In the first instance z = 5, w = 1, and so x = 3 but $x \ge z$ so this doesn't happen. In the second we get z = w = 2 and thus x = 2.

If y = 1 we get (z - 1)(w - 1) = 2. Since $z \ge w$ we get z - 1 = 2 and w - 1 = 1 so z = 3, w = 2 and so x = 5.