SOLUTION FOR SEPTEMBER 2024

The only correct solution was submitted by

Winner: Saikiran Motati

Let a, b be positive. Prove that:

$$
G(a,b) = G\left(\frac{a+b}{2}, \sqrt{ab}\right)
$$

where:

$$
G(a, b) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{(x^2 + a^2)(x^2 + b^2)}} dx.
$$

Proof: We change variables and set:

$$
x = \frac{1}{2} \left(u - \frac{ab}{u} \right)
$$
 where $0 < u < \infty$.

Then $-\infty < x < \infty$ and:

$$
dx = \frac{1}{2} \left(1 + \frac{ab}{u^2} \right) du = \frac{u^2 + ab}{2u^2} du.
$$

Also:

$$
\sqrt{x^2 + ab} = \frac{1}{2} \left(u + \frac{ab}{u} \right) = \frac{u^2 + ab}{2u}
$$

and:

$$
\sqrt{x^2 + \left(\frac{a+b}{2}\right)^2} = \frac{\sqrt{u^2 + a^2}\sqrt{u^2 + b^2}}{2u}.
$$

Then we see:

$$
G\left(\frac{a+b}{2}, \sqrt{ab}\right) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{(x^2 + (\frac{a+b}{2})^2)(x^2 + ab)}} dx
$$

= $2 \int_{0}^{\infty} \frac{1}{\sqrt{(u^2 + a^2)(u^2 + b^2)}} du = \int_{-\infty}^{\infty} \frac{1}{\sqrt{(u^2 + a^2)(u^2 + b^2)}} du = G(a, b).$

Note: Given $a_0 > b_0 > 0$ we define:

$$
a_{n+1} = \frac{a_n + b_n}{2}; b_{n+1} = \sqrt{a_n b_n}.
$$

This is called the *arithmetic-geometric mean sequence* of a_0 and b_0 . It turns out it can be shown that a_n is decreasing and b_n is increasing for $n \geq 1$ and in fact there is a $c > 0$ such that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = c$!!! Thus from the problem just solved we see that:

$$
G(a_{n+1}, b_{n+1}) = G(\frac{a_n + b_n}{2}, \sqrt{a_n b_n}) = G(a_n, b_n)
$$

 \Box

and therefore:

$$
G(a_n, b_n) = G(a_0, b_0)
$$
 for all $n \ge 1$.

Further since $G(a, b)$ is continuous in both a and b then taking the limit as $n \to \infty$ we obtain:

$$
G(c,c) = G(a_0, b_0)
$$

but $G(c, c)$ is easy to compute and it is just $G(c, c) = \frac{\pi}{c}$. Thus we see that:

$$
c = \frac{\pi}{G(a_0, b_0)}.
$$

The number c is often denoted $c = AGM(a_0, b_0)$.