SOLUTION FOR APRIL 2025

Correct solutions were turned in by:

Ali Diwan - Winner Jingyuan Wang - Runner-Up

Problem: Let $f : \mathbb{R} \to \mathbb{R}$ satisfy:

$$f(x+y) + f(x-y) = 2f(x)f(y)$$
 and $f(1) = -1.$ (1)

Show that f is periodic. That is, show there is a $p \neq 0$ such that f(x+p) = f(x) for all x.

Solution:

Let x = y = 0 which gives $2f(0) = 2f^2(0)$ so f(0) = 0 or f(0) = 1. Now let y = 0 and we get 2f(x) = 2f(x)f(0). If f(0) = 0 then $f(x) \equiv 0$ but this contradicts that f(1) = -1. Therefore we see f(0) = 1.

Next let x = y to obtain $f(2x) + f(0) = 2f^2(x)$. Thus $f(2x) = 2f^2(x) - 1$. Now let $x = \frac{1}{2}$ to obtain $-1 = f(1) = 2f^2(\frac{1}{2}) - 1$. Thus $f(\frac{1}{2}) = 0$.

Then using (1) and $y = \frac{1}{2}$ we see that $f(x + \frac{1}{2}) + f(x - \frac{1}{2}) = 0$ so $f(x - \frac{1}{2}) = -f(x + \frac{1}{2})$. Now let $y = x - \frac{1}{2}$ then $y + 1 = y + 2(\frac{1}{2}) = x + \frac{1}{2}$ and thus f(y+1) = -f(y). Then f(y+2) = -f(y+1) = f(y) and thus f(y+2) = f(y) so f is periodic.