NOVEMBER 2013 SOLUTION
Winner: Chia-Ting Han
Runner-Up: Kevin Lin
Problem Suppose z is a real number and that 22 + 2 and z° + x are rational. Is it possible
for x to be irrational?

SOLUTION No, it is not possible for z to be irrational, and thus x must be rational.

Proof Without loss of generality we assume x > 0. Suppose x is irrational and
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where a, b, p, ¢ are positive integers. Dividing these gives
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Then by the quadratic formula we have
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Note that m? 4+ 4mn — 4n? > 0 since o (and hence z?) is assumed to be real. Also m? + 4mn —
4n? # 0 because if so then m = —2n + 2nv2 = 2n(-1+ \/§) and this implies 7* is irrational
which is false.

So rewriting (1) gives
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z? = M where p, ¢, 7, w are positive integers and p is square free.
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Thus since we are assuming x > 0 we have
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and by assumption 23 + z is rational so
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for s,t positive integers. Thus
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Squaring both sides gives
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However, we now see that the right-hand side is rational but the left-hand side is not because
p is square free. Thus it must be that z is rational.



