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SOLUTION: For 0 < z < 1:

z = (1—z)» 72
In(z)In(l—z)+ > 5+ Y 5 =—. (1)
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Proof: For 0 < z < 1 let:
= " (1—z)"
f(x)=In(z)In(l —2)+ > S+ > — (2)
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Differentiating the sums term-by-term which is allowed since both sums converge uniformly
and the differentiated sums converge uniformly in a neighborhood of x gives:
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Now recall for 0 < z < 1:
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Integrating on (0, z) gives:
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Thus:
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Therefore:
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Replacing x with 1 — z gives:




Combining (3), (5)-(6) we see:

F(@) =0 (1)
and therefore f(x) is constant. Using L’Hopital’s rule one can show In(x)In(l — z) — 0 as
(&)
z — 17 and thus using (2) we have lim, ;- f(z) = > & = %2 and so (1) follows.
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Note that if we let = 3 in (1) we obtain:
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hence we obtain the interesting fact:
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