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Determine:
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(You may assume this series converges).

Hint: First show:
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Proof: The binomial series is just the Maclaurin series for f(x) = (1 + x)® where « is a real
number. Writing this out gives:
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It is straightforward to show using the ratio test that this series converges for |z| < 1.
Replacing x with —4z and setting o = —% gives for |z| < i:
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Next we observe the following:
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Thus we see that:



Next a straightforward but tedious exercise shows that:
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Thus it follows from (2) that:
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and therefore after integrating we see for some constant C:
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Taking limits as x — 0% shows that C = 0 and therefore:
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Finally we take the limit as # — §  and use (1) to obtain:
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One final note - showing that:
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is not immediately obvious but it does follow from Abel’s limit theorem which states that if
o0 o0

> ay converges then > a,x" converges for |z| < 1 and:
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