SOLUTION FOR MARCH 2023

Correct solutions were submitted by:

Victor Lin - Runner-Up
Eric Peng - Winner

Prove:
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where by = 1 and

Also prove:
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Remark: Notice that (3) says that the quantity 2 >~ %% is an integer! (This is not obvious -
n=0

not to me at least!)

Proof: Let g(z) = (¢ =Y. Next observe g(0) = 1 and:

g"(x) = (¢'(x) + g(x))e",
g"(x) = (¢"(x) + 24" () + g(x))e”
g""(x) = (¢"" () + 3¢" () + 3¢/ (x) + g(x))e”.

Notice that the numbers we obtain as coefficients are exactly the numbers that one obtains in
Pascal’s triangle. In fact one can show by induction that:
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Now let us write:

by .,
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and notice that:
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Then using (4)-(5) we see:



This proves (2).

Next we recall:
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Thus:
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We note here that interchanging the order of summation in the above is allowed because the
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series ) T+ converges absolutely for all values of x. Thus:
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Comparing this with (1) we see this proves (3).



