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Prove:
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Also prove:
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Remark: Notice that (3) says that the quantity 1
e
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kn

k! is an integer! (This is not obvious -

not to me at least!)

Proof: Let g(x) = e(e
x−1). Next observe g(0) = 1 and:

g′(x) = exg(x)

g′′(x) = (g′(x) + g(x))ex,

g′′′(x) = (g′′(x) + 2g′(x) + g(x))ex

g′′′′(x) = (g′′′(x) + 3g′′(x) + 3g′(x) + g(x))ex.

Notice that the numbers we obtain as coefficients are exactly the numbers that one obtains in
Pascal’s triangle. In fact one can show by induction that:
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and notice that:
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Then using (4)-(5) we see:
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This proves (2).

Next we recall:
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We note here that interchanging the order of summation in the above is allowed because the
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Comparing this with (1) we see this proves (3).


