SOLUTION FOR JANUARY 2024

Winner: Orion Jordan
Runner Up: Victor Lin

Determine:

nler;O(n!e — [nle])
Note: [z] is the largest integer < x so for example [1.2] =1, [r] = 3,[-1.2] = —2).
Solution:

nlLIr;O(n!e — [nle]) = 0.

Proof: It follows from the Maclaurin series for f(xz) = e® at = 1 that:
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N 2! 3 n! " (n+1) '
Thus:
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Notice that the terms in the first set of parentheses are all integers. (For example g—: =
ﬁlg),(n —3)!' = (3)(n — 3)! where (}) is the binomial coefficient which is an integer).

Next we claim that the second term in parentheses is a number that is greater than or equal
to 0 and strictly less than 1 and therefore the above reads:
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nle = [nle] + <

Thus:
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To finish the proof we will now show that:
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Notice that:
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The series on the right is geometric and it is known for a geometric series with initial term a
and common ratio r with |r| < 1 that:

a

atar+ar?+ard 4. = .
1—-7r




For the series we are considering we have a = %H and r = n%rl < 1 and so its sum is:

1
=— —0asn— oo.
n

Therefore:

nlLIrgo(n!e — [nle]) = 0.



