SOLUTION FOR MARCH 2024

Correct solutions were submitted by:
Victor Lin - Runner Up
Rishabh Mallidi - Winner

Determine the values of p > 0 for which:

m=1 \n=1 (m + n)P
converges and for which p > 0 it diverges.
Solution: This converges if and only if p > 2.

Proof: Let’s first recall the integral test. Let f(z) be a positive decreasing continuous function
on [1,00). Then:
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It follows from this that > f(n) converges if and only if [ f(z) dx converges.
n=1

Now let m > 1 and apply the above to f(z) = m Then we see from (1) that:
> 1 = 1 > 1

m) = ———dr < — < ——— dx = h(m).
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Applying the integral test to g(y) and h(y) we see that:
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Thus:

——— converges if and only if / / ——— dx dy converges.
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Now notice that:

e 1
——— dx converges if and only if p > 1.
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Thus:

Now assume p > 1. Then:

Next we see that:
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and the integral on the right converges if and only if p —1 > 1 i.e. if p > 2.

And so finally for p > 0 we see:

Z (Z ) converges if and only if p > 2.
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