SOLUTION FOR MARCH 2024

Correct solutions were submitted by:

Victor Lin - Runner Up Rishabh Mallidi - Winner

Determine the values of p > 0 for which:

$$\sum_{m=1}^{\infty} \left(\sum_{n=1}^{\infty} \frac{1}{(m+n)^p} \right)$$

converges and for which p > 0 it diverges.

Solution: This converges if and only if p > 2.

Proof: Let's first recall the *integral test*. Let f(x) be a positive decreasing continuous function on $[1, \infty)$. Then:

$$\int_{2}^{\infty} f(x) dx \le \sum_{n=2}^{\infty} f(n) \le \int_{1}^{\infty} f(x) dx. \tag{1}$$

It follows from this that $\sum_{n=1}^{\infty} f(n)$ converges if and only if $\int_{1}^{\infty} f(x) dx$ converges.

Now let $m \ge 1$ and apply the above to $f(x) = \frac{1}{(m+x)^p}$. Then we see from (1) that:

$$g(m) = \int_2^\infty \frac{1}{(m+x)^p} \, dx \le \sum_{n=2}^\infty \frac{1}{(m+n)^p} \le \int_1^\infty \frac{1}{(m+x)^p} \, dx = h(m).$$

Applying the integral test to g(y) and h(y) we see that:

$$\int_{2}^{\infty} \left(\int_{2}^{\infty} \frac{1}{(y+x)^{p}} dx \right) dy = \int_{2}^{\infty} g(y) dy \le \sum_{m=2}^{\infty} g(m) \le \sum_{m=2}^{\infty} \sum_{n=2}^{\infty} \frac{1}{(m+n)^{p}} dx$$

$$\le \sum_{m=1}^{\infty} h(m) \le \int_{1}^{\infty} h(y) dy \le \int_{1}^{\infty} \left(\int_{1}^{\infty} \frac{1}{(y+x)^{p}} dx \right) dy.$$

Thus:

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{(m+n)^p}$$
 converges if and only if $\int_{1}^{\infty} \int_{1}^{\infty} \frac{1}{(y+x)^p} dx dy$ converges.

Now notice that:

$$\int_{1}^{\infty} \frac{1}{(y+x)^{p}} dx \text{ converges if and only if } p > 1.$$

Thus:

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{(m+n)^p} \text{ diverges if } 0$$

Now assume p > 1. Then:

$$\int_{1}^{\infty} \frac{1}{(y+x)^{p}} dx = \frac{1}{(p-1)} \frac{1}{(y+1)^{p-1}}.$$

Next we see that:

$$\int_1^\infty \int_1^\infty \frac{1}{(y+x)^p} \, dx \, dy = \int_1^\infty \frac{1}{(p-1)} \frac{1}{(y+1)^{p-1}} \, dy$$

and the integral on the right converges if and only if p-1>1 i.e. if p>2.

And so finally for p > 0 we see:

$$\sum_{m=1}^{\infty} \left(\sum_{n=1}^{\infty} \frac{1}{(m+n)^p} \right) \text{ converges if and only if } p > 2.$$