SOLUTION FOR APRIL 2024

Correct solutions were submitted by:

Victor Lin - Winner
Rishabh Mallidi - Runner-Up

Let i = v/—1. Determine whether the following infinite products converge or diverge:

E(l—F;) and £[1|1+%|.
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H (1 + n) diverges and 1;[ |1 + ﬁ| converges.
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In(py) = ;iln (1 + le) . (1)

We now use the following inequality which holds for all > 0:

Proof: We first examine:

Let:

Then:

0<In(l+=z) <z
(To prove this let 2 > 0 and g(x) =z —In(1+z). Then g(0) =0 and ¢'(z) = 1— H% =15 2>0
from which it follows that g(x) > 0.) Using this inequality above gives:
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0 <lIn(py) < 3 Z 3= this is a p series with p =2 > 1 and so Z 3 converges.
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Thus we see from (1) that In(py) is increasing and bounded above and thus Nlim In(py) exists
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which implies lim py exists. Thus:
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H ‘1 + i‘ converges.
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For the next part it helps to rewrite 1 + % in polar form. In fact:
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Then by rules of exponentials:
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Now the product on the right converges by the first part of this problem so we just need to
determine:
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whether or not E tan™* () converges.
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We now use the following inequality which holds for all 0 < z < 1:

1
t > —
an () 2 17
To see this let h(z) = tan~!(z) — $x. Then notice that h(0) = 0 and A'(z) = 1+1:r2 —1>0for
0 <z <1and thus h(z) >0for 0 <z <1.
It follows from this that:
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Ztan*l (> > — Z — and as is well-known Z — — o0 as N — oo.
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Therefore we see:
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E tan~! () diverges
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and therefore:

(1 + Z> diverges.
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