SOLUTION FOR NOVEMBER 2025

Problem: The Cissoid of Diocles - The "Duplication of the Cube" Problem

Let a > 0. The Cissoid in Cartesian coordinates is

$$y^2 = \frac{x^3}{a - x}.$$

Let A = (a,0) and B = (0,2a). Draw the line from A to B and denote P as the interesction point of this line and the cissoid. Draw the line from the origin through P to where it intersects with the line x = a. Denote this point Q. Prove $(AQ)^3 = 2(OA)^3$ and prove then that the cube of a has been doubled. (AQ) is the distance from A to A and A is the distance from A to A.

Proof: The line from A to B is given by y=2(a-x). The intersection of this line and the cissoid occurs when $2(a-x)=\frac{x^{3/2}}{(a-x)^{1/2}}$. Solving for x gives $x=\frac{\sqrt[3]{4}}{\sqrt[3]{4}+1}$ and $y=\frac{2a}{\sqrt[3]{4}+1}$. Thus

$$P = \left(\frac{\sqrt[3]{4} a}{\sqrt[3]{4} + 1}, \frac{2a}{\sqrt[3]{4} + 1}\right).$$

Now the line through the origin and P has slope $m = \frac{\frac{2a}{\sqrt[3]{4}+1}}{\frac{\sqrt[3]{4}}{\sqrt[3]{4}+1}} = \frac{2}{\sqrt[3]{4}} = \sqrt[3]{2}$ and so the line through the origin and P is given by $y = \sqrt[3]{2}x$.

Finally, when x=a this gives $y=\sqrt[3]{2}\,a$. So the point Q is given by $Q=(a,\sqrt[3]{2}\,a)$. Then we see $AQ=\sqrt[3]{2}\,a$ and OA=a. Thus $(AQ)^3=2a^3=2(OA)^3$.