SOLUTION FOR JANUARY 2025

A correct solution was turned in by:

Anirudh Mazumder

PROBLEM Describe the set S which is the set of all ordered pairs (a, b) of real numbers such that both (possibly complex) roots of $z^2 + az + b = 0$ satisfy |z| < 1.

SOLUTION

$$S = \{(a,b)| |a| - 1 < b < 1\}.$$

Proof Suppose z solves $z^2 + az + b = 0$ and suppose both roots of this satisfy |z| < 1. Then by the quadratic formula we have

$$z = \frac{-a \pm \sqrt{a^2 - 4b}}{2}.$$

CASE 1 $a^2 - 4b < 0$

In this case we see that

$$z = \frac{-a \pm i\sqrt{4b - a^2}}{2}$$

and thus

$$|z|^2 = \frac{a^2 + 4b - a^2}{4} = b$$

so in this case we see that |z| < 1 if and only if $\frac{a^2}{4} < b < 1$.

Now notice that $\frac{a^2}{4} < b < 1$ thus $a^2 < 4b$ and therefore $0 \le (a \pm 2)^2 = a^2 \pm 4a + 4 < 4b \pm 4a + 4$. Thus $(\pm a) - 1 < b$ and therefore |a| - 1 < b < 1.

CASE 2 $a^2 - 4b > 0$

Subcase 2i. $a \ge 0$

Here we have $z_1 = \frac{-a-\sqrt{a^2-4b}}{2} \le \frac{-a+\sqrt{a^2-4b}}{2} = z_2 \le 0$. Thus if we want |z| < 1 then we must have $\left|\frac{-a-\sqrt{a^2-4b}}{2}\right| < 1$. That is,

$$\frac{a+\sqrt{a^2-4b}}{2} < 1.$$

Thus

$$0 \le \sqrt{a^2 - 4b} < 2 - a \tag{1}$$

and therefore a < 2. And since we are in Case 2 this implies $4b \le a^2 < 4$ and thus b < 1. Now squaring (1) gives $a^2 - 4b < 4 - 4a + a^2$ hence -4b < 4 - 4a thus

$$a - 1 < b$$
.

Subcase 2ii. a < 0

Replacing a with -a in subcase 2i gives

$$-a - 1 < b$$

so combining Subcase 2i, 2ii and Case 1 gives

$$|a| - 1 < b$$
.

Thus if $z^2 + az + b = 0$ has both solutions with |z| < 1 then $(a, b) \in S$.

Conversely, suppose $(a, b) \in S$. Then we want to show that the two solutions of $z^2 + az + b = 0$ satisfy |z| < 1. So let us suppose |a| - 1 < b < 1.

CASE 1
$$a^2 - 4b < 0$$

In this case as we saw earlier then

$$|z|^2 = \frac{a^2 + 4b - a^2}{4} = b$$

and since we are assuming b < 1 it follows that |z| < 1.

CASE 2
$$a^2 - 4b \ge 0$$

So now again suppose |a|-1 < b < 1. Then it follows that |a| < 2 and also we see that 4|a|-4 < 4b so -4|a|+4 > -4b and thus $(2-|a|)^2 = a^2 - 4|a| + 4 > a^2 - 4b$. Taking roots and recalling |a| < 2 we obtain $2 > |a| + \sqrt{a^2 - 4b}$. Thus we see that $\frac{|a| + \sqrt{a^2 - 4b}}{2} < 1$. Hence $|z| = |\frac{-a \pm \sqrt{a^2 - 4b}}{2}| \le \frac{|a| + \sqrt{a^2 - 4b}}{2} < 1$.