SOLUTION FOR MAY 2025

Determine all $f: \mathbb{R} \to \mathbb{R}$ such that

$$f(x^2 + f(y)) = y + f^2(x). (1)$$

Solution: f(x) = 0 for all x or f(x) = x for all x.

PROOF: Let x = 0 then we obtain

$$f(f(y)) = y + f^{2}(0). (2)$$

This implies f is one-to-one because if f(a) = f(b) then $a + f^2(0) = f(f(a)) = f(f(b)) = b + f^2(0)$ and so a = b.

Also, f is onto because given y then $f(f(y-f^2(0))) = y - f^2(0) + f^2(0) = y$.

Thus f is one-to-one and onto. Thus there exists a y_0 such that $f(y_0) = 0$.

Substituting $x = y = y_0$ into (1) gives $f(y_0^2) = f(y_0^2 + f(y_0)) = y_0 + f^2(y_0) = y_0 + 0$ $0 = y_0$. Thus $f(y_0^2) = y_0$ so using (2) we see $y_0^2 + f^2(0) = f(f(y_0^2)) = f(y_0) = 0$. Thus $y_0 = 0$ so we see f(0) = 0 and then (2) becomes

$$f(f(y)) = y (3).$$

Now let y = 0 in (1) to obtain:

$$f(x^2) = f^2(x).$$

Replace x by -x to get

$$f^{2}(x) = f(x^{2}) = f((-x)^{2}) = f^{2}(-x).$$

Thus either f(-x) = f(x) or f(-x) = -f(x). If $x \neq 0$ then f(-x) = f(x) is false because f is one-to-one so it must be that

$$f(-x) = -f(x).$$

Also let x = 1 above and we get $f(1) = f^2(1)$ so f(1) = 1 or f(1) = 0. But $f(1) \neq 0$ because f is one-to-one and f(0) = 0. Thus f(1) = 1.

Now replace y with f(y) in (1) to obtain

$$f(x^{2} + y) = f(x^{2} + f(f(y))) = f(y) + f^{2}(x) = f(x^{2}) + f(y).$$

Let $z = x^2$ and we see if z > 0 then

$$f(z+y) = f(z) + f(y).$$

Now suppose z < 0 then using the above and that f is odd then

$$-f(z-y) = f((-z) + y) = f(-z) + f(y) = -f(z) + f(y)$$

thus

$$f(z + (-y)) = f(z - y) = f(z) - f(y) = f(z) + f(-y)$$

and letting w = -y we get

$$f(z+w) = f(z) + f(w)$$

and so f is linear. This implies f(r) = r for rational r.

Next suppose z > y then $z - y = c^2$ so

$$0 \le f(c)^2 = f(c^2) = f(z - y) = f(z) - f(y).$$

Thus f is an increasing function.

Finally let $x \in \mathbb{R}$ and choose r_n, q_n rational with $r_n < r_{n+1} < x < q_{n+1} < q_n$ such that $\lim_{n \to \infty} r_n = x = \lim_{n \to \infty} q_n$. Then $r_n = f(r_n) \le f(x)$ since $r_n < x$. And since $r_n \to x$ then this implies $x \le f(x)$. Similarly, $f(x) \le f(q_n) = q_n$ and since $q_n \to x$ then we see $f(x) \le x$. Thus f(x) = x for all x.