
SOLUTION FOR SEPTEMBER 2025

A correct solution was submitted by:

Hansam Yun

Problem:

Derive Newton’s series:
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Hint: Evaluate
∫ 1

0
1+x2

1+x4 dx in two different ways.

Proof: One way to evaluate this integral is using power series.

Recall that for |x| < 1 we have

1

1− x
= 1 + x+ x2 + x3 + · · · .

Replacing x with −x4 gives that for |x| < 1

1

1 + x4
= 1− x4 + x8 − x12 + x16 + · · · .

Multiplying by x2 gives

x2

1 + x4
= x2 − x6 + x10 − x14 + x18 + · · · .

Adding these two gives

1 + x2

1 + x4
= 1 + x2 − x4 − x6 + x8 + x10 − x12 − x14 + · · · .

Integrating on [0, 1] gives∫ 1

0
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1 + x4
dx = 1 +
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Another way to rewrite the integral is by dividing each term by x2 to obtain∫ 1

0

1 + x2

1 + x4
dx =

∫ 1

0

1
x2 + 1

x2 + 1
x2

dx.

Now make the substitution u = x− 1
x . This gives u2 + 2 = x2 + 1

x2 and du = (1 + 1
x2 ) dx. So

we obtain ∫ 0
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Equating (1) and (2) yields the result.


