SOLUTION FOR SEPTEMBER 2025

A correct solution was submitted by:

Hansam Yun

Problem:

Derive Newton's series:

$$1 + \frac{1}{3} - \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \frac{1}{11} - \dots = \frac{\pi}{2\sqrt{2}}.$$

HINT: Evaluate $\int_0^1 \frac{1+x^2}{1+x^4} dx$ in two different ways.

Proof: One way to evaluate this integral is using power series.

Recall that for |x| < 1 we have

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots.$$

Replacing x with $-x^4$ gives that for |x| < 1

$$\frac{1}{1+x^4} = 1 - x^4 + x^8 - x^{12} + x^{16} + \cdots$$

Multiplying by x^2 gives

$$\frac{x^2}{1+x^4} = x^2 - x^6 + x^{10} - x^{14} + x^{18} + \cdots$$

Adding these two gives

$$\frac{1+x^2}{1+x^4} = 1 + x^2 - x^4 - x^6 + x^8 + x^{10} - x^{12} - x^{14} + \cdots$$

Integrating on [0, 1] gives

$$\int_0^1 \frac{1+x^2}{1+x^4} dx = 1 + \frac{1}{3} - \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \frac{1}{11} - \dots$$
 (1)

Another way to rewrite the integral is by dividing each term by x^2 to obtain

$$\int_0^1 \frac{1+x^2}{1+x^4} \, dx = \int_0^1 \frac{\frac{1}{x^2}+1}{x^2+\frac{1}{x^2}} \, dx.$$

Now make the substitution $u = x - \frac{1}{x}$. This gives $u^2 + 2 = x^2 + \frac{1}{x^2}$ and $du = (1 + \frac{1}{x^2}) dx$. So we obtain

$$\int_{-\infty}^{0} \frac{1}{u^2 + 2} du = \frac{1}{\sqrt{2}} \tan^{-1}(\frac{u}{\sqrt{2}})|_{-\infty}^{0} = 0 - \frac{1}{\sqrt{2}}(-\frac{\pi}{2}) = \frac{\pi}{2\sqrt{2}}.$$
 (2)

Equating (1) and (2) yields the result.