
ANALYTIC AND TOPOLOGICAL NETS

KIRILL LAZEBNIK

Abstract. We characterize which planar graphs arise as the pullback, under a rational
map r, of an analytic Jordan curve passing through the critical values of r. We also prove
that such pullbacks are dense within the collection of f−1(Σ), where f is a branched cover
of the sphere and Σ is a Jordan curve passing through the branched values of f .

1. Introduction

In this paper we study the following objects:

Definition 1.1. An analytic net is a set of the form r−1(Γ) where r : Ĉ → Ĉ is a rational
function and Γ is an analytic Jordan curve passing through all the critical values of r.

Two examples are shown in Figure 1, and several more in the Appendix. It was proven
in [EG02] that a real rational function r with real critical points is determined (up to a
real Mobius transformation) by its set of critical points, denoted CP(r), together with the
topology of the net r−1(R). Thus, nets are a natural object to look at in trying to answer
the following question of [Thu10]:

Question 1.2. Given a set of 2d − 2 points on Ĉ to be critical points (in the domain), it
has been known since Schubert that there are Catalan(d) rational functions [up to Mobius
transformations in the range] with those critical points. Is there a conceptual way to describe
and identify them?

In studying Question 1.2, it is useful to pass to the less rigid setting of branched covers
(these are the topological or “floppy” versions of rational functions: see the appendix for a
definition), and the topological version of Definition 1.1:

Definition 1.3. A topological net is a set of the form f−1(Σ) where f : Ĉ → Ĉ is a branched
cover and Σ is a Jordan curve passing through all the critical (branched) values of f .

Remark 1.4. A topological or analytic net affords a clear description of the underlying map:
on each component of the complement of the net, the map is simply a homeomorphism onto
one of the two components of the complement of the curve passing through the critical values
(see Figure 1).
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(a) (b)

Figure 1. In each of (A) and (B) is pictured an analytic Jordan curve Γ passing
through the critical values of a rational map r, and the analytic net r−1(Γ). The
critical points and values are marked with stars, and are numbered so that the kth

critical point maps to the kth critical value. The example in (A) is of degree 3,
while the example in (B) is of degree 4. As noted in Remark 1.4, each rational map

can be simply described as a conformal map of each component of Ĉ\r−1(Γ) onto a

component of Ĉ \Γ, such that this piecewise definition extends continuously across
the net. The nets and curves were produced in MATLAB.

A net can naturally be viewed as a graph by placing vertices at each critical (branched)
point, and in the generic case that each critical point is simple, each vertex of the graph has
degree 4. Thus, in light of Question 1.2 and Remark 1.4, one would like to know:

Question 1.5. Which 4-valent graphs in Ĉ are topological nets? Which analytic 4-valent

graphs in Ĉ are analytic nets?

Question 1.5 has two parts, the topological part (the first half) and the analytic part (the
second half). The topological part was answered in [KT20] (for the non-generic setting, see
[Lob23]). In this paper we answer the analytic part.

Before stating our result precisely, we remark that while every analytic net is a topological
net, not every topological net with analytic edges is an analytic net (see Remark 1.10). This
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leads to the question: how does the space of (rigid) analytic nets fit within the larger
space of (flexible) topological nets? We give one answer in the following theorem, which

asserts density with respect to the Hausdorff metric dH(·, ·). We denote Nε(E) := {z ∈ Ĉ :

dist(z, E) < ε} for ε > 0 and E ⊂ Ĉ, and we denote the critical (branched) points of a
branched cover f by CP(f).

Theorem A. For any topological net f−1(Σ) and ε > 0, there exists an analytic net r−1(Γ)
so that dH(f

−1(Σ), r−1(Γ)) < ε and CP(f) ⊂ Nε(CP(r)).

Since a net essentially determines the underlying map, Theorem A may be interpreted as
saying that every branched cover has a rational function which is “close” to it, in the sense
of Theorem A, although we remark the degree of r in Theorem A will in general be much
larger than the degree of f . We also remark that the related question of which branched
covers are “equivalent” to rational maps is well studied and has generated a large literature
(see [DH93], [Thu20]).

We will now describe our answer to the analytic part of Question 1.5. First we need some
notation and definitions to state our result (Theorem B below) precisely.

Notation 1.6. Given a Jordan domain Ω and a point z0 ∈ Ω, we denote the harmonic
measure of a Borel subset I ⊂ ∂Ω by ω(I, z0,Ω). If ∂Ω is rectifiable, then harmonic measure
ω(·, z,Ω) and Lebesgue measure on ∂Ω are mutually absolutely continuous (see Theorem
IV.1.2 of [GM08]), and we will denote the Radon-Nikodym derivative of ω(·, z,Ω) with
respect to Lebesgue measure at a point x ∈ ∂Ω by dω(·, z,Ω)(x).

Definition 1.7. For any 4-valent graph G ⊂ Ĉ, we denote by V (G) the set of vertices of
G. We say a 4-valent graph G is analytic if each edge of G is a strict subset of an analytic
curve, and the four angles of intersection at any vertex are all π/2. A marking of G is a
pair (Z, X), where Z is a set of points one in each face of G, and X ⊂ G \ V (G) satisfies
|X ∩ ∂F | = 1 for each face F of G. We use the notation zF := Z ∩F , and xF := X ∩ ∂F for
any face F .

Definition 1.8. Given a marking (Z, X) of an analytic graph G, we define a function gF on
the boundary of each face F of G as follows. First, let γ : [0, 1] → ∂F be a parametrization
(counter-clockwise about F ) satisfying γ(0) = xF and ω(γ([0, t]), zF , F ) = t for all 0 ≤ t ≤ 1.
For γ(t) ̸∈ V (G), we denote by Ft the unique face neighboring F with γ(t) ∈ ∂Ft. We set:

(1.1) gF (t) :=
dω(·, zFt , Ft)(γ(t))

dω(·, zF , F )(γ(t))
for t ∈ [0, 1] \ {t : γ(t) ∈ V (G)}.

We denote the domain [0, 1] \ {t : γ(t) ∈ V (G)} of gF by dom(gF ).

Remark 1.9. We use the notation O(T) for the class of analytic self-homeomorphisms of
T := {z : |z| = 1}; namely the self-homeomorphisms of T which extend to holomorphic
functions in some neighborhood of T. We also remark that any 4-valent graph can always
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be 2-colored, that is: each face can be assigned one of two colors such that any two faces
which share an edge have different colors. Moreover there are exactly two 2-colorings of any
4-valent graph. Our convention will be to use black and white for the 2 colors.

Our answer to the analytic part of Question 1.5 is the following, which roughly says an
analytic graph is an analytic net if and only if there exists a choice of base points for harmonic
measure in each face of G so that the ratio of harmonic measures from either side of the
boundary of a face is the same over all faces:

Theorem B. Let G be a 2-colored, analytic 4-valent graph. Then G is an analytic net if
and only if there exists a marking (Z, X) of G and κ ∈ O(T) so that for each white face F
we have gF (t) = |κ′(e2πit)| for all t ∈ dom(gF ).

Remark 1.10. Recall that harmonic measure ω(I, z0,Ω) coincides with the probability that
a Brownian motion started at z0 exits Ω through I. With this in mind, Theorem B can be
used to help identify which analytic 4-valent graphs are analytic nets (see Figure 2 and its
caption).

We conclude the introduction by briefly describing the proofs of Theorems A and B,
starting with Theorem B. If G = r−1(Γ) is an analytic net, we prove that κ is the conformal
welding (see Definition 2.1) associated to the curve Γ, and we may take Z to be the preimage

(under r) of two points in different components of Ĉ \ Γ, and X to be the preimage (under
r) of a non-critical value on Γ. Conversely, suppose we are given G, (Z, X), κ satisfying
the conditions in Theorem B. The Measurable Riemann Mapping Theorem (henceforth
abbreviated MRMT) implies the existence of an analytic Jordan curve Γ such that κ is the
derivative of a conformal welding associated to Γ. We then prove that the hypotheses on G,
(Z, X), κ imply that the map defined by mapping conformally each face of G to one of the

two components of Ĉ \ Γ extends continuously across G and hence is rational.
Now we turn to a description of the proof of Theorem A. Given the graph G := f−1(Σ),

we define a map g in the union of the faces of G as follows. In each white face of G, g is a
conformal map to D followed by z 7→ zn + δz for large n and small δ, and in each black face

the map g is a conformal map to D∗ := Ĉ \D followed by z 7→ zm + δz for m≫ n. There is
a curve Γ running through the critical values of g so that g−1(Γ) ≈ G, however g does not
extend continuously across G. We prove that there is an arbitrarily small neighborhood of
G in which we can quasiregularly interpolate between the definitions of g in different faces,
with dilatation bounded independently of how small the neighborhood of G is. Thus the

MRMT implies the existence of a quasiconformal ϕ : Ĉ → Ĉ so that r := g ◦ ϕ−1 is rational
and r ≈ g, and hence r−1(Γ) ≈ g−1(Γ) ≈ G. The details of the interpolation are rather
technical and rely in part on some existing results, including several lemmas from [Bis15]
and [FJL19].
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F F ′

Figure 2. Pictured is a sketch of a topological net with analytic edges. Theorem
B implies that this topological net is not an analytic net since the function gF ′ will
have more local extrema than the function gF .

2. Proof of Theorem B

Definition 2.1. Let Γ ⊂ Ĉ be a Jordan curve, and let ϕ1, ϕ2 denote Riemann mappings of

D, D∗ onto the two components of Ĉ \ Γ. The mappings ϕ1, ϕ2 both extend to T, and the
homeomorphism ϕ−1

2 ◦ ϕ1 : T → T is called a conformal welding. We denote the class of all
such homeomorphisms (obtained by considering all Jordan curves) by Weld. We set WeldA

to be the class of conformal weldings obtained by considering only analytic Jordan curves Γ.

Proposition 2.2. O(T) = WeldA.

Proof. Let ϕ−1
2 ◦ ϕ1 ∈ WeldA be a conformal welding associated to an analytic Jordan curve

Γ. Both ϕ1, ϕ2 extend analytically across T by the Schwarz Reflection principle for analytic
arcs, and hence ϕ−1

2 ◦ ϕ1 ∈ O(T).
Conversely, given κ ∈ O(T), κ may extended to a K-quasiconformal mapping κ : D → D.

Consider the Beltrami coefficient µ defined by µ(z) := κz(z)/κz(z) for z ∈ D, and µ(z) = 0

for z ̸∈ D. The MRMT implies there exists a K-quasiconformal homeomorphism ϕ : Ĉ → Ĉ
solving the equation ϕz(z) = µ(z) · ϕz(z) a.e.. Let Σ := ϕ(T). The identity

κ = κ ◦ ϕ−1 ◦ ϕ
shows that κ is a conformal welding associated to Σ, since ϕ : D∗ → ϕ(D∗) is conformal
(since µ ≡ 0 in D∗), and κ ◦ ϕ−1 = (ϕ ◦ κ−1)−1 with ϕ ◦ κ−1 : D → ϕ(D) conformal (since
µ(z) := κz(z)/κz(z) for z ∈ D). Thus κ is a conformal welding, and so it remains to show
that the curve Σ is analytic, which follows since κ is holomorphic in a neighborhood of T,
and hence so is ϕ. □

Thus, by Proposition 2.2, Theorem B is equivalent to the following:
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Theorem 2.3. Let G be an analytic 4-valent graph. Then G is an analytic net if and only
if there exists a marking (Z, X) of G and κ ∈ WeldA so that for each white face F we have
gF (t) = |κ′(e2πit)| for all t ∈ dom(gF ).

We will break Theorem 2.3 into two parts: necessity (Theorem 2.7) and sufficiency (The-
orem 2.8). The proofs of both parts will use the following fact (Proposition 2.4)

Proposition 2.4. Let Ω be a Jordan domain with piecewise-analytic boundary, and Ω′ a
Jordan domain with analytic boundary. Then, for any conformal map ϕ : Ω → Ω′ and
z ∈ Ω, we have

(2.1) dω(·, z,Ω)(ζ) = |ϕ′(ζ)| · dω(·, ϕ(z),Ω′)(ϕ(ζ))

for all smooth points ζ ∈ ∂Ω.

Proof. This follows from conformal invariance of harmonic measure. □

Notation 2.5. If Σ ⊂ Ĉ is an analytic Jordan curve such that 0, ∞ lie in different compo-

nents of Ĉ \Σ, we will denote by int(Σ) (resp. ext(Σ)) the component of Ĉ \Σ containing 0
(resp. ∞).

It will be useful to isolate the following special case of Proposition 2.4.

Corollary 2.6. Let Σ ⊂ Ĉ be an analytic Jordan curve such that 0, ∞ lie in different

components of Ĉ \ Σ, and let ϕ0 (resp. ϕ∞) be a conformal map of int(Σ) (resp. ext(Σ))
onto D (resp. D∗) fixing 0 (resp. ∞). Then

(2.2) dω(·, 0, int(Σ))(ζ) = |ϕ′
0(ζ)|/2π,

(2.3) dω(·,∞, ext(Σ))(ζ) = |ϕ′
∞(ζ)|/2π,

for all ζ ∈ Σ.

Proof. This follows from Proposition 2.4 together with the fact that the harmonic measures
ω(·,D, 0), ω(·,D∗,∞) on T both coincide with length measure on T. □

Theorem 2.7. Let G be an analytic 4-valent graph. If G is an analytic net, then there
exists a marking (Z, X) of G and κ ∈ WeldA so that for each white face F we have gF (t) =
|κ′(e2πit)| for all t ∈ dom(gF ).

Proof. Suppose G is an analytic net, in other words there exists a rational map r and an
analytic Jordan curve Σ passing through CV(r) such that r−1(Σ) = G. Take two points, one

in each component of Ĉ \Σ: we may assume without loss of generality that these two points

are 0, ∞ and that black (resp. white) components are mapped to the component of Ĉ \ Σ
containing ∞ (resp. 0). Set Z := r−1({0,∞}) and X := r−1(y) where y ∈ Σ \ CV(r). Let
ϕ0, (resp. ϕ∞) be a conformal mapping of int(Σ), (resp. ext(Σ)) onto D (resp. D∗) fixing 0
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(resp. ∞), so that κ := ϕ∞ ◦ ϕ−1
0 is a conformal welding. We normalize ϕ0(y) = ϕ∞(y) = 1.

Fix a white face F . We will show that gF (t) = |κ′(e2πit)| for all t ∈ dom(gF ).
Note that the map r is injective on each face of G. Thus, we deduce:

(2.4) g(t) :=
dω(·, zFt , Ft)(γ(t))

dω(·, zF , F )(γ(t))
=
dω(·,∞, ext(Σ))(r ◦ γ(t))
dω(·, 0, int(Σ))(r ◦ γ(t))

=

∣∣∣∣ϕ′
∞(r ◦ γ(t))
ϕ′
0(r ◦ γ(t))

∣∣∣∣ ,
for all t ∈ dom(gF ), where the first = follows from Proposition 2.4, and the second = follows
from Corollary 2.6. By the chain rule we have that

(2.5)
ϕ′
∞(r ◦ γ(t))
ϕ′
0(r ◦ γ(t))

=
(
ϕ∞ ◦ ϕ−1

0

)′
(ϕ0 ◦ r ◦ γ(t)) .

Recall the normalizations ϕ0 ◦ r(xF ) = 1 and ϕ0 ◦ r(zF ) = 0, and recall also that γ(t) was
defined so that ω(γ([0, t]), zF , F ) = t. Thus we deduce by conformal invariance of harmonic
measure that ϕ0(r ◦ γ(t)) = exp(2πit). Together with (2.4) and (2.5), this implies that

(2.6) g(t) = |
(
ϕ∞ ◦ ϕ−1

0

)′
(exp(2πit)) | =: |κ′(e2πit)|

for all t ∈ dom(gF ). □

Theorem 2.8. Let G be an analytic 4-valent graph. Suppose there exists a marking (Z, X)
of G and κ ∈ WeldA so that for each white face F we have gF (t) = |κ′(e2πit)| for all
t ∈ dom(gF ). Then G is an analytic net.

Proof. Let G, Z, X, κ be as in the statement, and let Σ be the analytic Jordan curve giving
rise to the conformal welding κ := ϕ∞ ◦ ϕ−1

0 where ϕ∞ (resp. ϕ0) is a conformal mapping of
ext(Σ) (resp. int(Σ)) onto D∗ (resp. D). We may assume without loss of generality that 0,

∞ lie in different components of Ĉ\Σ, and ϕ0(0) = 0, ϕ∞(∞) = ∞, ϕ∞ ◦ϕ−1
0 (1) = 1. Define

a mapping r : Ĉ \ G → Ĉ \ Σ as follows. In each white (resp. black) face F , set r to be
the conformal mapping from F to int(Σ) (resp. ext(Σ)), normalized so that r(zF ) = 0 (resp.
r(zF ) = ∞) and r(xF ) = ϕ−1

0 (1) (resp. r(xF ) = ϕ−1
∞ (1)). By removability of analytic arcs for

holomorphic mappings, the proof will be finished once we show that r extends continuously
across G.

Let F be a white face of G, and consider the parametrization γ : [0, 1] → ∂F as in
Definition 1.7. Denote by ri : ∂F → Σ the boundary value extension of r|F , and let
ro : ∂F \ V (G) → Σ denote the boundary value extension of r restricted to the union
of the black faces of G. Fix t ∈ [0, 1], and let

(2.7) st := ω(ri ◦ γ([0, t]),∞, ext(Σ)).

Then, since ri ◦ γ|[0,t] parametrizes ri ◦ γ([0, t]), we have

(2.8) st =

∫ t

0

dω(·,∞, ext(Σ))(ri ◦ γ(x)) · |(ri ◦ γ)′(x)|dx.
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Multiplying by 1 gives us

(2.9) st =

∫ t

0

dω(·, 0, int(Σ))(ri ◦ γ(x))
dω(·,∞, ext(Σ))(ri ◦ γ(x))
dω(, 0, int(Σ))(ri ◦ γ(x))

· |(ri ◦ γ)′(x)|dx.

Corollary 2.6 and the chain rule imply that

(2.10)
dω(·,∞, ext(Σ))(ri ◦ γ(x))
dω(, 0, int(Σ))(ri ◦ γ(x))

=

∣∣∣∣ϕ′
∞(ri ◦ γ(x))
ϕ′
0(ri ◦ γ(x))

∣∣∣∣ = ∣∣∣(ϕ∞ ◦ ϕ−1
0

)′
(ϕ0 ◦ ri ◦ γ(t))

∣∣∣ .
The normalization ϕ0 ◦ ri(xF ) = 1 together with conformal invariance of harmonic measure
implies that

(2.11) ϕ0 ◦ ri ◦ γ(t) = exp(2πit) for all t ∈ [0, 1],

and so (2.10) and (2.11) together imply

(2.12)
dω(·,∞, ext(Σ))(ri ◦ γ(x))
dω(, 0, int(Σ))(ri ◦ γ(x))

= |κ′(e2πit)| for all t ∈ [0, 1].

Thus the assumption gF (t) = |κ′(e2πit)| for all t ∈ dom(gF ) together with (2.9) implies that

(2.13) st =

∫ t

0

dω(·, 0, int(Σ))(ri ◦ γ(x))
dω(·, zFx , Fx)(γ(x))

dω(·, zF , F )(γ(x))
· |(ri ◦ γ)′(x)|dx

Next, we observe that

(2.14) dω(·, 0, int(Σ))(ri ◦ γ(x))|r′i(γ(x))| = dω(·, zF , F )(γ(x))

for x ∈ [0, 1] \ {x : γ(x) ∈ V (G)} by Proposition 2.4, and so (2.13) and (2.14) together with
the chain rule imply that

(2.15) st =

∫ t

0

dω(·, zFx , Fx)(γ(x)) · |γ′(x)|dx.

Next, Proposition 2.4 and (2.15) imply that

(2.16) st =

∫ t

0

dω(·,∞, ext(Σ))(r0 ◦ γ(x)) · |(r0 ◦ γ)′(x)|dx,

which together with the definition (2.7) of st implies that

(2.17) ω(ri ◦ γ([0, t]),∞, ext(Σ)) = ω(ro ◦ γ([0, t]),∞, ext(Σ)).

Since we normalized so that ri ◦ γ(0) = ro ◦ γ(0), we conclude that ri(γ(t)) = ro(γ(t)). Since
t ∈ [0, 1] was arbitrary, we conclude that r extends continuously across ∂F , and since F was
an arbitrary white face, we conclude that r extends continuously across G. □
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3. An Interpolation between z 7→ zm and z 7→ zm + δz

Having proven Theorem B, we now turn to the proof of Theorem A. In this Section we
focus on a technical result we will need on the existence of an efficient interpolation between
z 7→ zm on |z| = 1 and z 7→ zm + δz on rD, where r < 1, m ∈ N and δ > 0.

Definition 3.1. Consider the smooth bump function:

b(x) :=

{
exp(1 + 1

x2−1
) if 0 ≤ x < 1

0 if x ≥ 1.

We use the transformation ϕr(x) := x−r
1−r

in order to define the modified smooth bump
function:

η̂r(x) :=


1 if x ≤ r

b(ϕr(x)) if r ≤ x ≤ 1

0 if x ≥ 1,

and we define ηr(z) := η̂r (|z|). We set ιm,δ(z) := zm + δz · ηrm,δ
(z) for z ∈ D with rm,δ :=

1− (4δ)/m.

We refer to Section 3 of [FJL19] for a proof of the following lemma.

Lemma 3.2. There exist n ∈ N, δ > 0, and k < 1 such that if m > n and ε ≤ δ, then

(3.1) rm,ε > (ε/m)1/(m−1) and

∣∣∣∣∣∣∣∣(ιm,ε)z
(ιm,ε)z

∣∣∣∣∣∣∣∣
L∞(D)

< k.

Notation 3.3. We will use the notation ιm := ιm,δ for m and δ as in the conclusion of
Lemma 3.2, and we will sometimes omit the subscript m and simply write ι.

It will be important to record the critical points and values of ι:

(3.2) CP(ιm) =

(
−δ
m

) 1
m−1

, and CV(ιm) = δ

(
−δ
m

) 1
m−1

(
m− 1

m

)
.

Remark 3.4. We extend ι to a holomorphic self-map of Ĉ by Schwarz-reflection: ι(z) :=

1/ι(1/z) for z ∈ D∗. Thus, statements about ι|D easily translate to statements about ι|D∗ ,
for instance the critical points and values of ι|D∗ are obtained by inverting the formulas in
(3.2).

Notation 3.5. We will use the notation A(r1, r2) := {z ∈ C : r1 < |z| < r2}.

Definition 3.6. We set

(3.3) cm :=

(
δ

m

) 2
m−1



10 KIRILL LAZEBNIK

Lemma 3.7. The sequence cm → 1 as m→ ∞, and if |z| < cm, then

(3.4) |ι(z)| ≤ cmm + δcm < |CV(ι)|.
In particular, the annulus A(cmm + δcm, 1) contains the critical values of ι, and for any ε > 0
we have ι−1(A(cmm + δcm, 1)) ⊂ A(1− ε, 1) for all sufficiently large m.

Proof. The conclusion cm → 1 as m → ∞ follows from L’Höpital’s rule. The statement
|ι(z)| ≤ cmm + δcm is simply the triangle inequality. We calculate that

(3.5) cmm + δcm = δ (δ/m)
2

m−1

(
δ

m2
+ 1

)
,

and so, by (3.2), the inequality

(3.6) cmm + δcm < |CV(ι)|
is equivalent to

(3.7)
δ

m

(
δ

m2
+ 1

)
< 1− 1

m

which is true for large m since the left-hand side tends to 0 and the right-hand side to 1 as
m→ ∞. □

4. Proof of Theorem A

Having collected the relevant facts about the map ι in the previous section, we now turn
to the proof of Theorem A.

Notation 4.1. Throughout this section, we will fix (as in the statement of Theorem A) a

topological net G := f−1(Σ) ⊂ Ĉ. For the purposes of proving Theorem A, after replacing
G by a Hausdorff approximant, we may assume that the edges of G are analytic, and at any
vertex where 2n edges meet, the angles of intersection are all π/n. Choose a 2-coloring of
G, and for each white (resp. black) face F of G, we let ϕF denote a conformal mapping of
F onto D (resp. D∗).

We will now define a sequence of graphs (Gn)
∞
n=1 by subdividing the edges in G. The

graphs Gn and G will coincide as embedded subsets of the plane, but the diameters of the
edges of Gn will → 0 as n→ ∞.

Definition 4.2. For each n ∈ N, we define a graph Gn as follows. Let F be a white face of
G. Define

(4.1) Ṽ F
n := ϕ−1

F {ζ : ζn = ±1},

and color each point in Ṽ F
n black or white according to whether the point is a pullback of

an nth root of +1 or −1, respectively. For each vertex v ∈ V (G) satisfying v ∈ ∂F , let Iv be
the component of ∂F \ Ṽ F

n containing v, and denote by xw (resp. xb) the white (resp. black)
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endpoint of Iv. Let Iw denote the component of ∂F \ Ṽ F
n such that Iw ∩ Iv = {xw}. Define

V F
n by removing xw, xb from Ṽ F

n , and adding v (colored black) as well as the midpoint of
Iw (colored white). Doing so over all vertices v ∈ V (G) ∩ ∂F defines V F

n , and we set Vn
to be the union of V F

n over all white faces F . We define Gn to be the graph obtained by
subdividing G at the vertices Vn, in other words V (Gn) = Vn.

We will now explain how new edges and vertices can be added to each black face F of
the graph Gn so that there exists a small adjustment of ϕF which maps the edges of this
modified black face (with added edges and vertices) to the mth roots of ±1 for some m≫ n
(see Figure 3). First we will need to introduce several definitions.

Definition 4.3. Suppose e, f are rectifiable Jordan arcs, and h : e→ f is a homeomorphism.
We say that h is length-multiplying on e if the push-forward (under h) of arc-length measure
on e coincides with the arc-length measure on f multiplied by length(f)/length(e).

Notation 4.4. For a graph G ⊂ Ĉ and C <∞, we let

(4.2) NC(G) :=
⋃
e

{z ∈ Ĉ : dist(z, e) < C · diam(e)},

where the union in (4.2) is taken over all edges e in G. For m ∈ N, we let

Z±
m := {z ∈ T : zm = ±1} and Zm := Z+

m ∪ Z−
m.

Definition 4.5. Suppose Ω ⊂ C is a domain such that ∂Ω ⊂ G for some graph G, and let

C <∞. We say a quasiregular mapping g : Ω → Ĉ is (C,G)-supported if supp(gz) ⊂ NC(G).
We say a domain W ⊂ Ω is a (C,G)-tree domain in Ω if W ⊂ NC(G) and ∂W consists of
G ∩ ∂Ω together with a collection of pairwise disjoint trees rooted at the vertices of G.

Theorem 4.6. There exist K, C < ∞ so that for every n ∈ N and every black face F of
G, there exists a (C,Gn)-tree domain W = W (n, F ) in F , an integer m = m(n, F ), and a
K-quasiconformal mapping ψ = ψ(n, F ) : D∗ \ ϕF (∂W ) → D∗ so that:

(1) ψ ◦ϕF : W → D∗ is (C, ∂W )-supported, and ψ ◦ϕF (z) = ϕF (z) off of supp((ϕF ◦ψ)z),
(2) for any edge e of ∂W ∩ Gn, ψ ◦ ϕF (e) is a component of T \ Zm, and ψ ◦ ϕF is

length-multiplying on e, and
(3) for any edge e of ∂W \ Gn and x ∈ e, the two limits limW∋z→x(ψ ◦ ϕF )

m(z) are
conjugate points on T.

Remark 4.7. Theorem 4.6 is essentially a summary of several technical lemmas in [Bis15];
we will summarize the main idea in this Remark for the reader’s convenience and refer to
[Bis15] or [BL23] for the details ([Bis15] contains the original proofs, and [BL23] contains a
simpler version of the argument which is sufficient for this paper). One may assume that
F = D, in which case Vn ∩ F consists of unevenly spaced points on T. The main part of
the proof of Theorem 4.6 is to construct segments rooted at Vn ∩ F and a quasiconformal
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G4

G̃4

F D∗

W

ϕF

ϕF ψ

D∗ \ ϕF (∂W ) D∗

Figure 3. Illustrated is Theorem 4.6 and some of the notation in this section.
Here n = 4 and m(4, F ) = 8. The domain W is obtained by removing the pictured
trees from F . The trees are chosen such that the added vertices are mapped, by
ψ ◦ ϕF , onto the 8th roots of ±1 as pictured. The map ψ does not extend to a
single-valued map on ϕF (∂W \ ∂F ), but for any x ∈ ϕF (∂W \ ∂F ), the two limits
limW∋z→x ψ(z) are mapped to conjugate points on T by z 7→ z8.

mapping which maps the union of Vn ∩ F with the vertices on the constructed segments
onto the mth roots of ±1. Neither the quasiconformal map ψ nor the constructed segments
are difficult to describe: the segments have as many vertices as are needed to “fill in” the
missing mth roots, and ψ is piecewise-linear in logarithmic coordinates.

Notation 4.8. We denote G̃n :=
⋃

F ∂W (n, F ), where the union is over all black faces F .

In other words, G̃n is the graph Gn together with the trees added in Theorem 4.6 over all
black faces. We let F ′ := F \ ∂W for any black face F , in other words F ′ is the black face
F after removing the trees added in Theorem 4.6.

Lemma 4.9. There exist C, K < ∞ so that for every n ∈ N and white face F , there is a
K-quasiconformal, (C,Gn)-supported map ϕ̃F : F → D so that

(1) ϕ̃F (Vn ∩ ∂F ) = Zn,

(2) ϕ̃F is length-multiplying on each edge of Gn ∩ ∂F , and
(3) ϕ̃F (z) = ϕF (z) off of supp((ϕ̃F )z).
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Proof. Recall from Definition 4.2 that there are 2 · |V (G) ∩ F | many vertices which ϕF does
not map onto an nth root of ±1. We fix this by defining ϕ̌F as a post-composition of ϕF with
a self-homeomorphism of D which is the identity outside of a 1/n-radius neighborhood of T,
and inside the 1/n-radius neighborhood of T maps linearly the components of T \ ϕF (Vn)
onto the components of T\Zn. This can be done with quasiconformal constant independent
of n.

Next, consider the 2-quasiconformal map

(4.3) χ(z) :=

{
z/|z|1/2 if |z| ≤ 1,

z if |z| ≥ 1.

Let χr,ζ(z) := r ·χ((z− ζ)/r)+ ζ be a rescaled version of χ. Let D(z, r) := {ζ : |ζ − z| < r}.
Define

(4.4) ΦF :=

{
χ1/n,ϕ(v) ◦ ϕ̌F in ϕ̌−1

F (D(ϕ̌F (v), 1/n)) for any v ∈ V (G)

ϕ̌F otherwise.

The map ΦF has the property that |Φ′
F | is bounded away from 0 and ∞ for ζ ∈ ∂F , with a

bound independent of n. Let LHP := {z : Re(z) < 0}, and denote by

(4.5) Φ̂F : LHP → LHP

a 2πi-periodic lift of ΦF under 2πi-periodic universal covering maps of LHP onto F \{ϕ−1
F (0)},

D \ {0}. Let ξ : iR → iR denote the piecewise-linear map which sends each component I

of iR \ Φ̂−1
F ({πi/n : n ∈ Z}) linearly onto Φ̂F (I), and let c denote the maximum diameter

of a component of iR \ Φ̂−1
F ({πi/n : n ∈ Z}). Since |Φ̂′

F | is bounded away from 0 and ∞
on iR, the linear interpolation between Φ̂F on −c+ iR and ξ on iR has dilatation bounded
independently of n (see, for instance, Lemma 2.1 of [BL23], or Theorem A.1 of [MPS20]).

Define Φ̃F to be Φ̂F for Re(z) < −c, and to be the aforementioned linear interpolation in
−c ≤ Re(z) ≤ 0. The projection (under the covering maps) of the map Φ̃F back to a map
F 7→ D satisfies the conclusions of the Lemma. □

Definition 4.10. Recalling the map ι of Section 3, we define, for every n ∈ N, a function

hn : Ĉ \ G̃n → Ĉ \ T as follows:

(4.6) hn(z) :=

{
ιn ◦ ϕ̃F in every white face F

ιm(n,F ) ◦ ψ ◦ ϕF in F ′ for every black face F

The map hn does not extend to a single-valued function across the edges of G̃n \G. We will
fix this using the following map.

Definition 4.11. Let µ(z) := (z+1)/(z−1) be the conformal mapping of {z : |z| > 1} onto
the right-half plane, taking the triple (−1, 1,∞) to (0,∞, 1). Note that µ−1 = µ. Consider
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the 3-quasiconformal map ν : {Re(z) > 0} → C \ (−∞, 0] defined by

ν(reiθ) =


reiθ, |θ| ≤ π/4,

rei3(θ−π/4)+iπ/4, π/4 < θ < π/2

rei3(θ+π/4)+iπ/4, −π/4 > θ > −π/2.

Thus σ := µ−1 ◦ ν ◦ µ = µ ◦ ν ◦ µ is 3-quasiconformal from {|z| > 1} onto C \ [−1, 1] (see
Figure 4).

Figure 4. A quasiconformal map σ : {|z| > 1} → C \ [−1, 1]. The compo-
sition µ ◦ ν ◦ µ is the identity in the light gray region, and 3-QC in the dark
gray.

Definition 4.12. For every n ∈ N, we define a map gn : Ĉ\G̃n → Ĉ as follows. In each white
face F , we set gn := hn. If F is a black face, we define gn by adjusting the definition of hn in
F ′ as follows. Let X ⊂ C be the set where the map σ of Definition 4.11 is not conformal (this
is the dark shaded region in the leftmost picture of Figure 4). The set (ιm)

−1(X) has 2m
components in D∗, one neighboring each component of T \ Zm with diameter comparable to
1/m. Thus the set (hn|F ′)−1(X) has 2m(n, F ) components in F ′, one neighboring each side
of each edge of G̃n ∩ ∂F ′. We let U denote the union of those components of (hn|F ′)−1(X)
which neighbor an edge of (G̃n ∩ ∂F ′) \Gn. We define

(4.7) gn(z) :=

{
σ ◦ hn(z) if z ∈ U

hn(z) if z ∈ F ′ \ U,

in F ′ for each black face F .

Proposition 4.13. For every n ∈ N the function gn : Ĉ \ G̃n → Ĉ extends to a K-

quasiregular function gn : Ĉ → Ĉ, where K is independent of n, and

(4.8) area(supp(gn)z)
n→∞−−−→ 0.
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Proof. To check that gn extends quasiregularly across G̃n, it suffices (by a standard remov-
ability result for quasiregular mappings) to check that gn extends continuously across each
edge of G̃n. There are two types of edges to check: those belonging to Gn, and those
belonging to G̃n \Gn.
Let e be an edge in Gn, and gBn (resp. gWn ) denote the boundary values of the map gn

restricted to the black (resp. white) face containing e on its boundary. Then, since z 7→ zd

is length-multiplying on T for every d, and ιn(z) = zn for z ∈ T, Lemma 4.9 implies that
gWn (e) = ±T ∩H and gWn is length-multiplying on e. Similarly, Theorem 4.6(2) implies that
gBn = ±T ∩H and gBn is length-multiplying on e. Since gWn and gBn both map e to the same
set, agree on the endpoints of e, and both are length-multiplying on e, we conclude that gWn ,
gBn agree pointwise on e. Hence gn extends continuously across e.
Now, let e be an edge in G̃n \ Gn. Then, by Theorem 4.6(3) and Definition 4.10, the

two limits limF ′∋z→x hn(z) are conjugate points of T for any x ∈ e. Thus, since σ maps
conjugate points of T onto the same point of [−1, 1], Definition 4.12 implies that the limit
limF ′∋z→x gn(z) exists and is real-valued, and hence gn extends continuously across e.
Thus we have shown that gn extends quasiregularly across G̃n, and since the quasiconfor-

mality constants of the maps σ, ι, ψ, ϕ̃F in the definition of gn do not depend on n, neither
does the quasiconformality constant of gn. Lastly, the relation (4.8) follows since each of the
maps in the definition of gn is either conformal or (C, G̃n)-supported for C independent of
n. □

Notation 4.14. Recall Definition 3.6 of the constant cn. For n ∈ N, we let

(4.9) An := A
(
cnn + δcn, 1/max

F

(
c
m(n,F )
m(n,F ) + δcm(n,F )

))
,

where the maximum is over all black faces F .

Proposition 4.15. For every n, we have

(4.10) {±1} ⊂ CV(gn) ⊂ An and V (G) ⊂ CP(gn)

Proof. If F is a white face, then gn|F := ιn ◦ ϕ̃F . Since ϕ̃F is quasiconformal, we have

(4.11) CV(gn|F ) = CV(ιn) ⊂ An

by Lemma 3.7. Similarly, if F is a black face, then gn|F ′ is a composition of quasiconformal
mappings with ιm(n,F ), and so again by Lemma 3.7 we have:

(4.12) CV(gn|F ′) = CV(ιm(n,F )) ⊂ An.

The only points of G̃n where gn is locally d : 1 for d > 1 are the vertices of G̃n (which
include V (G)), and the vertices of G̃n are mapped to ±1 by gn. This, together with (4.11)
and (4.12), implies (4.10). □

Notation 4.16. For ε > 0, let Nε(E) := {z : d(z, E) < ε} denote the ε-neighborhood of a
set E ⊂ C.
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Proposition 4.17. Let ε > 0. Then, for all sufficiently large n, g−1
n (An) ⊂ Nε(G).

Proof. Let F be a white face of G. Lemma 3.7 implies that (ιn|D)−1(An) ⊂ A(1 − ε′, 1) for
any ε′ > 0 if n is sufficiently large. Thus

(4.13) (gn|F )−1(An) = ϕ−1
F ((ιn|F )−1(An)) ⊂ Nε(G) for every white face F

and sufficiently large n. Similarly, if F is a black face of G, then (ιm(n,F )|D∗)−1(An) ⊂
A(1, 1 + ε′) by Lemma 3.7 and so the definition of gn|F ′ implies that

(4.14) (gn|F ′)−1(An) ⊂ Nε(G) for every black face F

and sufficiently large n. Together, (4.13) and (4.14) imply the result. □

Recalling CV(gn) ⊂ An by Proposition 4.15, we may define:

Definition 4.18. For every n ∈ N, let Σn ⊂ An be an analytic Jordan curve passing through
the critical values of gn.

For each n there are many analytic Jordan curves Σn satisfying Definition 4.18; any of them
will suffice in what follows.

Proposition 4.19. Let ε > 0. Then, for all sufficiently large n, the map gn satisfies

(4.15) dH(g
−1
n (Σn), G) < ε.

Proof. The inequality (4.15) will follow once we show that

(4.16) g−1
n (Σn) ⊂ Nε(G), and

(4.17) G ⊂ Nε(g
−1
n (Σn)).

The inequality (4.16) follows from Proposition 4.17 since Σn ⊂ An. The inequality (4.17)
follows since Σn passes through +1 by Proposition 4.15, and so ι−1

n (Σn) ⊂ T passes through
all nth roots of +1 which fill a ε′-dense subset of T for any ε′ > 0 if n is sufficiently large. □

Definition 4.20. By Proposition 4.13 and the Measurable Riemann Mapping Theorem, for

each n there exists a K-quasiconformal mapping ϕn : Ĉ → Ĉ so that

rn := gn ◦ ϕ−1
n : Ĉ → Ĉ

is holomorphic (and hence a rational function). We normalize each ϕn so as to fix any three

given points in Ĉ.

Lemma 4.21. The mappings ϕn converge to the identity uniformly on compact subsets of

Ĉ.

Proof. This follows from (4.8) since the mappings ϕn are K-quasiconformal, all normalized
to fix the same three points, and with K independent of n (by Proposition 4.13). □
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Proposition 4.22. Let ε > 0. Then, for all sufficiently large n, the rational map rn satisfies

(4.18) dH(r
−1
n (Σn), G) < ε.

Proof. We have that r−1
n (Σn) = ϕn(g

−1
n (Σn)), and so the conclusion follows from Proposition

4.19, Lemma 4.21, and the triangle inequality. □

Proof of Theorem A: Since Σn runs through the critical values of gn, and we have CV(gn) =
CV(rn) and CP(rn) = ϕn(CP(gn)), we have that r := rn and Γ := Σn satisfy the conclusions
of Theorem A for all large n by (4.10), Lemma 4.21 and Proposition 4.22. □

Appendix A

In this appendix, we record the definition of a branched cover for the sake of completeness,
and we provide several more examples of analytic nets in Figures 5-7. The same conventions
explained in the caption of Figure 1 hold for Figures 5-7.

Definition A.1. Let d ≥ 1. A map f : Ĉ → Ĉ is called a branched covering of degree d if

there is a finite subset W ⊂ Ĉ so that

(1) f : Ĉ \ f−1(W ) → Ĉ \W is a covering map of degree d, and
(2) For every w ∈ W and each z ∈ f−1(w), there exist neighborhoods U , V of z, w

(respectively), an integer n ≥ 1, and homeomorphisms ϕU : U → D, ϕV : V → D so
that ϕV ◦ f ◦ ϕ−1

U (z) = zn for all z ∈ D.
We will call the smallestW satisfying the above the critical values of f , denoted CV(f), and
if w ∈ CV(f) and z ∈ f−1(w) satisfies (2) with n ≥ 2, we call z a critical point of f , and we
denote the set of critical points by CP(f).
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