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Abstract4

We analyze scales in Lp
GF (R,F�HC), the stack of projecting, Θ-g-organized F-5

mice over F�HC, for operators F with nice condensation properties. This builds on6

Steel’s analysis of scales in Lp(R) in [17] and [20]. As in [20], we work from optimal7

determinacy hypotheses. One of the main applications of our work is in the core model8

induction.9

1 Introduction10

There has been significant progress made in the core model induction in recent years. Pio-11

neered by W. H. Woodin and further developed by J. R. Steel, R. D. Schindler and others,12

it is a powerful method for obtaining lower-bound consistency strength for a large class of13

theories. One of the key ingredients is the scales analysis in L(R) ([18]) and in Lp(R) (that14

is, K(R); see [17] and [20]). Applications include Woodin’s proof of ADL(R) from an ω1-dense15

ideal on ω1 and Steel’s proof that PFA implies ADL(R), amongst many others.16

To obtain lower-bound consistency strength stronger than ADL(R) - for example, to con-17

struct models of “AD+ + Θ > Θ0” - one would like to have the scales analysis of LpF(R)18

(the stack of projecting F -mice over R) for various operators F . Unfortunately, if F is19

an operator coding an iteration strategy Σ, the usual definition1 of “F -premouse over R”20

doesn’t make sense, because R is not wellordered. One might try to get around this partic-21

ular issue by arranging F -premice by simultaneously feeding in multiple branches instead of22

feeding them in one by one. But it seems difficult to define an amenable predicate achieving23

1Roughly, that is: Given F-premice N EM, with N reasonably closed, and letting T be the <N -least
iteration tree for which N lacks instruction regarding the branch b = Σ(T ), then b is the next piece of
information fed in to M after N . See §3 for details.
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this,2 and even if one could do so, the scale constructions in [17] and [20] do not appear to24

generalize well with such an approach, because of their dependence on the close relationship25

between a mouse over R and its HOD. These problems are solved by using the hierarchy26

of Θ-g-organized F-premice, which are a certain kind of strategy premouse M built over27

(HCM, X), where X is self-scaled in M (see 4.22; this holds for X = ∅). The definition28

is a simple variant of g-organization, which is essentially due to Sargsyan; its main point is29

contained within his notion of reorganized hod premice, [6, §3.7]. However, in our presen-30

tation some of the details are a little different. For the precise definitions see 4.15, 4.17,31

and 4.23. We only define (Θ-)g-organization for nice operators F (niceness demands both32

a degree of condensation and of generic determination of F ; see 4.1). Given a nice F and33

self-scaled X ⊆ HC, we define Lp
GF(R, X) as the stack of all sound, countably iterable Θ-g-34

organized F -premice over (HC, X), projecting to R. We will analyze scales in this structure.35

If X = F�HC, the analysis can be done from optimal determinacy assumptions. We remark36

that when LpF(R, X) is actually well-defined (such as when F is a mouse operator), we37

usually have LpF(R, X) 6= Lp
GF(R, X), but the two hierarchies agree on their P(R), and38

actually have identical extender sequences (see 5.5).339

The scale constructions themselves are mostly a fairly straightforward generalization of40

Steel’s work in [18], [17] and [20]; the reader should be familiar with these.4 Let F , X be as41

above, and let M end a weak gap of Lp
GF(R, X). The construction of new scales over such42

M breaks into three cases, covered in Theorems 6.9, 6.16 and 6.20; these are analogous to43

[17, Theorems 4.16, 4.17] and [20, Theorem 0.1] respectively. Thus, for the first we must44

assume that J1(M) � AD. In the context of our primary application (core model induction),45

this assumption will hold if F�HC /∈ M|α and there are no divergent AD pointclasses ; see46

6.52. For the latter two we require that M � AD, along with further assumptions. If X is47

the code-set for F�HC then the latter two theorems cover all weak gaps, and so one never48

requires that J1(M) � AD.49

We won’t reproduce all the details of the proofs in [17] and [20], but will focus on the50

new features (and fill in some omissions). The most significant of these are as follows. First,51

we must generalize the local HOD analysis of a level M of Lp(R) to that of a level M of52

Lp
GF(R, X). As in [17], we establish a level-by-level fine-structural correspondence between53

H, the local HOD ofM, andM itself, above ΘM. The fact that we are using Θ-g-organized54

F -premice is very important in establishing this correspondence (and as for Lp(R), the55

2See the remarks in Appendix B.
3There have been recent works that make use of methods and results from this paper, for example [22],

[3], and [5].
4One needs familiarity with said papers for §§5,6 of this paper. If the reader has familiarity with just

[18], one might read the present paper, referring to [17] and [20] as (will be) necessary.
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correspondence itself is very important in the scales analysis). Second, an issue not dealt56

with in [20], but with which we deal here, is that a short tree T on a k-suitable F -premouse57

N may introduce Q-structures with extenders overlapping δ(T ) (since nontame F -mice may58

exist). (However, such Q-structures do not occur in genericity iterations and in comparisons59

of suitable g-organized F -mice.)60

The paper is organized as follows. In §2 we first cover some background material, filling61

in some gaps in the literature. We discuss operators F , and F -premice. We define when F62

condenses finely, showing that this property ensures that LF [E]-constructions run smoothly.63

In §3 we discuss strategy premice in detail, give a new presentation of these, and prove some64

condensation properties thereof, assuming that the strategy itself has good condensation65

properties. In §4 we define g-organized and Θ-g-organized F -premice, and prove related66

condensation. In §5 we analyse the local HOD ofM /Lp
GF(R, X) whenM �“Θ exists”. In67

§6 we analyse the scales pattern in Lp
GF(R, X). In the appendices we explain why we have68

used the notion of condenses finely in place of notions used by others, and the advantages69

in the presentation of strategy premice in §3.70

Definitions and Notation. We work under ZF+“ω1 is regular” throughout the paper.71

For a set X, we write card(X) for the cardinality of X. For an ordinal θ, we write P(< θ)72

for the set of bounded subsets of θ and Hθ for the set of sets hereditarily of size < θ. For73

M a transitive structure we write o(M) for the ordinal height of M . We write trancl(X) for74

the transitive closure of X. We use a ̂ b to denote the concatenation of a and b.75

Given a transitive set X, possibly with some additional structure, we write Jα(X) for the76

αth step in Jensen’s J -hierarchy over X (so for example, J1(X) is the rudimentary closure77

of X ∪ {X}). Given a transitive set X and predicates Ai ⊆ X, and M = (X,A1, . . .), we78

write bMc for the universe X of M.79

A premouseM is as in [21]; in particularM is a J -structure of the formM = (Jα[E],∈80

, EM, FM), where E = EM is a fine extender sequence and F = FM is the (amenable81

code for the) top extender of M. We write E+(M) for E ∪ {F} and E(M) for E. For82

γ ≤ α, we write M|γ for (Jγ[E�γ],∈, E�γ,E(γ)), and write M||γ for (Jγ[E�γ],∈, E�γ, ∅).83

So M|γ = M||γ if and only if E(γ) = ∅. If T is an iteration tree on M with successor84

length, we write N T for the last model of T . We also apply the preceding terminology85

and notation to Y -premice over X for various X, Y ; see 2.3, 2.10, 2.11 and 2.13 for some86

clarification. We use certain notions from [6].5 Other terminology is mostly as in [21].87

5Starting in §3, the reader should know the definitions of hull condensation and branch condensation.
For a complete understanding of this article, one should also know the definitions of hod premouse and hod
pair and some related material. However, everything that we do in relation to hod premice, we also do in
relation to standard premice, and so the main ideas in this article can be understood without knowing the
definition of hod premouse.
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2 F-premice88

Definition 2.1. Let L0 be the language of set theory expanded by unary predicate symbols89

Ė, Ḃ, Ṡ, and constant symbols ȧ, Ṗ. Let L−0 = L0\{Ė, Ḃ}.90

Let a be transitive. Let % : a→ rank(a) be the rank function. We write â = trancl({(a, %)}).91

Let P ∈ J1(â).92

A J -structure over a (with parameter P) (for L0) is a structure M for L0 such93

that aM = a, (PM = P), and there is λ ∈ [1,Ord) such that bMc = J SM

λ (â).94

Here we also let l(M) denote λ, the length of M, and let âM denote â.95

For α ∈ [1, λ] let Mα = J SM
α (â). We say that M is acceptable iff for each α < λ and96

τ < o(Mα), if97

P(τ<ω × â<ω) ∩Mα 6= P(τ<ω × â<ω) ∩Mα+1,

then there is a surjection τ<ω × â<ω →Mα in Mα+1.98

A J -structure (for L0) is a J -structure over a, for some a. a99

As all J -structures we consider will be for L0, we will omit the phrase “for L0”. We also100

often omit the phrase “with parameter P”. Note that if M is a J -structure over a then101

bMc is transtive and rud-closed, â ∈M and Ord∩M = rank(M). This last point is because102

we construct from â instead of a.103

F -premice will be J -structures of the following form.104

Definition 2.2. A J -model over a (with parameter P) is an acceptable J -structure105

over a (with parameter P), of the form106

M = (M ;E,B, S, a,P)

where ĖM = E, etc, and letting λ = l(M), the following hold.107

1. M is amenable.108

2. S = 〈Sξ | ξ ∈ [1, λ)〉 is a sequence of J -models over a (with parameter P).109

3. For each ξ ∈ [1, λ), ṠSξ = S�ξ.110

4. Suppose E 6= ∅. Then B = ∅ and there is an extender F over M which is â × γ-111

complete for all γ < crit(F ) and such that the premouse axioms [23, Definition 2.2.1]112

hold for (M, F ), and E codes F̃ ∪ {G} where: (i) F̃ ⊆M is the amenable code for F113
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(as in [21]); and (ii) if F is not type 2 then G = ∅, and otherwise G is the “longest”114

non-type Z proper segment of F in M.6 a115

Note that with notation as above, if λ is a successor ordinal then M = J (SMλ−1), and116

otherwise, M =
⋃
α<λ bSαc. The predicate Ḃ will be used to code extra information. Suppose117

EM codes an extender F . Clearly rank(a) < crit(F ). Note that, in accordance with [23,118

Definition 2.2.1], but as opposed to [21, Definition 2.4], we allow F to be of superstrong119

type (see below).7 Next, we describe some terminology and notation regarding the above120

definition.121

Definition 2.3. Let M be a J -model with parameter a. Let EM denote ĖM, etc. Let122

λ = l(M), SM0 = a, SMλ =M, andM|ξ = SMξ for all ξ ≤ λ. An (initial) segment ofM is123

just a structure of the form M|ξ for some ξ ∈ [1, λ]. We write P EM iff P is a segment of124

M, and P /M iff P EM and P 6=M. LetM||ξ be the structure having the same universe125

and predicates as M|ξ, except that EM||ξ = ∅. We say that M is E-active iff EM 6= ∅,126

and B-active iff BM 6= ∅. Active means either E-active or B-active; E-passive means not127

E-active; B-passive means not B-active; and passive means not active. Also, M is type128

0 iff M is passive, type 4 iff M is B-active, and type 1, 2 or 3 iff M is E-active, with129

the usual numerology. If M is E-active with extender F , we say M, or F , is superstrong130

iff iF (crit(F )) = ν(F ). We say that M is super-small iff M has no superstrong initial131

segment.132

If M is not type 3, we define the fine-structural notions (i.e. projecta, parameters,133

solidity, soundness, cores) precisely as for passive premice in [1], using the language8 L0 ∪ â,134

where â consists of constant symbols.9 IfM is type 3, we define the squashMsq ofM as in135

[1], and fine-structure is defined over Msq, still using the same language as in the previous136

case.137

The classes of Q-formulas and P-formulas in the language L0, are defined analogously138

to in [1, §§2,3] (but with Σ1 in place of the rΣ1 of [1]).139

6We use G explicitly, instead of the code γM used for G in [1, §2], because G does not depend on which
(if there is any) wellorder of M we use. This ensures that certain pure mouse operators are forgetful.

7The main point of permitting superstrong type extenders is that it simplifies certain things. However,
the cost is that it complicates others. If the reader prefers, one could instead require, as in [21], that F not
be of superstrong type, but various statements throughout the paper regarding condensation would need to
be modified, along the lines of [1, Lemma 3.3].

8So even if EM 6= ∅, we do not include constants analogous to those used in [1]. The interpretations of
these constants are all encoded into EM.

9So C0(M) = M. We only define the ρk+1, pk+1, etc, given that Ck(M) is a k-sound model over a. In
any case, it certainly makes sense to ask whether “M is 1-solid” or “M is 1-sound”, and to define C1(M),
for example. We set ρ1 to be the least ordinal ρ such that ρ ≥ rank(a) and ρ ≥ ω and there is some
A ⊆ ρ<ω × â<ω which is ΣM1 (M), but A /∈M. We say “ρ1 = a” to mean “ρ1 = max(ω, rank(a))”. Etc.
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Let ρ(M) be the least ρ ≤ λ such that there is some A ⊆M such that A is ΣMω (M) and140

A ∩ bM|ρc /∈M.141

An a-cardinal of M is an ordinal γ < o(M) such that in M there is no surjection142

â<ω × η<ω → γ with η < γ. We write ΘM for the supremum of all γ < o(M) such that in143

M there is a surjection â<ω → γ.144

LetM be a J -model and N EM. We say that N is a (strong) cutpoint ofM iff for145

all P EM, if N / P and EP 6= ∅ then o(N ) ≤ crit(EP) (o(N ) < crit(EP)).146

Given a J -model M1 over b and a J -model M2 over M1, we write M2↓b for the J -147

model M over b, such that M is “M1 ̂M2”, if this is well-defined. That is, M2↓b is the148

unique J -modelM such that bMc = bM2c, aM = b, EM = EM2 , BM = BM2 , and P /M149

iff P E M1 or there is Q /M2 such that P = Q↓b, when such an M exists. (Existence150

depends only on whether the J -structure M described here is acceptable.)151

Inverting this, given a J -modelM over b andM1 /M such thatM1 is a strong cutpoint152

of M, we write M↓M1 for the J -model M2 over M1 such that M2↓b =M. a153

Lemma 2.4. The natural adaptations of Lemmas 2.4, 2.5, 3.2, 3.3 of [1] hold,10 and in154

fact, in adapting conclusion (b) of [1, Lemma 3.3], we can omit the clause “or N is of155

superstrong type”.11
156

In fact, we can strengthen a little Lemmas 2.4 and 3.2 of [1].157

Definition 2.5. Let N be a J -structure with EN 6= ∅. If EN is a set of partial extenders158

over N , all with the same critical point µ, then we define µ(EN ) = µ.159

Let M be a J -model. Let R be an L0-structure (possibly illfounded). If M is type 3160

then let π : R →Msq, and otherwise let π : R →M.161

We say that π is a weak 0-embedding iff π is Σ0-elementary (therefore R is extensional162

and wellfounded, so we assume R is transitive) and there is an ∈-cofinal set X ⊆ R such163

that π is Σ1-elementary on elements of X, and ifM is type 1 or 2, then (by the proof of 2.6164

it follows that µ = µ(ER) is defined) there is an ∈ × ∈-cofinal set Y ⊆ R|(µ+)R ×R such165

that π is Σ1-elementary on elements of Y .166

More generally, we define (weak, near) k-embedding analogously to [1]. Let M be a167

J -model of type 3. A (weak, near) k-embedding π : N → M literally has domain bN sqc168

and codomain bMsqc and the elementarity of π is with regard to N sq,Msq. Here either N is169

a J -model of type 3 (so N sq 6= N ) or N is a J -structure which we are already considering170

“at the squashed level” (for example, N = Ult(Qsq, EQ) for some J -model Q of type 3), in171

which case N sq denotes N itself. a172

10Note that for type 1 or 2 J -models, the µM and νM (with notation as in [1, Lemma 2.5]) are in fact
computable from any element of EM, and so we don’t really need constant symbols for them.

11Because we allow superstrong extenders.
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Lemma 2.6. Let π,R,M be as in 2.5, with π a weak 0-embedding.12
173

(1 ) R is a J -structure.174

(2 ) Suppose M is not type 3. Then for any Q-formula ψ and z ∈ R, if M � ψ(π(z)) then175

R � ψ(z). Therefore R is a J -model of the same type as M.176

(3 ) Suppose M is type 3. Then for any P-formula ψ and z ∈ R, if Msq � ψ(π(z)) then177

R � ψ(z). Let U = Ult(R, ER), γ = o(R) and λ = (γ+)U . If U|λ is wellfounded then178

R = N sq for some J -model N of type 3.179

Proof. Let X, and Y if M is type 1 or 2, witness that π is a weak 0-embedding.180

We first prove (1). Given x ∈ R, let y ∈ X with x ∈ y. SinceM �“π(y) ∈ SSMα (âM) for181

some ordinal α”, therefore R �“y ∈ SSRα (âR) for some ordinal α”. This suffices.182

We now prove (2) assuming thatM is type 1 or 2. The function f is ΣR1 , where f : R → R183

and f : y 7→ SSRα (âR) where α is least such that y ∈ SSRα (âR). Therefore we may and do184

assume that X ⊆ rg(f) and Y ⊆ rg(f)× rg(f).185

Now by Σ1-elementarity without parameters, ER 6= ∅ and γR is defined, and since π is186

Σ0-elementary, π“ER ⊆ EM and π(γR) = γM. Therefore µ = µ(ER) is defined.187

Now for simplicity assume that ψ has only n = 1 free variable. Suppose188

ψ(z) ⇐⇒ ∀x∀θ < (µ+)∃y∃ν[x ⊆ y & θ ≤ ν < (µ+) & ϕ(z, y, ν)]

where ϕ is Σ1. Let z ∈ R be such that M � ψ(π(z)). Let x ∈ R and θ < (µ+)R. Let189

x ∈ x′ ∈ R and θ ∈ t ∈ R|(µ+)R be such that (x′, t) ∈ Y . Let θ′ = o(t). Then190

M � ∃y∃ν[π(x′) ⊆ y & π(θ′) ≤ ν & card(θ′) = card(ν) & ϕ(π(z), y, ν)],

and this statement pulls back under π, which completes the proof.191

We leave the remaining cases to the reader.192

Definition 2.7. We say that X is explicitly swo’d (self-wellordered) iff X = x∪{x,<}193

for some transitive set x, and wellorder < of x. In this situation, <X denotes the wellorder194

of X extending <, and with last two elements x and <. We say thatM is implicitly swo’d195

iff either M is explicitly swo’d, or M is a J -model with parameter X for some explicitly196

swo’d X. In the latter case, <M denotes the natural wellorder of bMc extending <X . We197

may identify an implicitly swo’d M with the explicitly swo’d bMc ∪ {M, <M}.198

12In case of any confusion in relation to the last paragraph of 2.5, let us clarify that here if M is type 3
then we are considering R “at the squashed level”.
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We say that a set or class B is an operator background iff (i) B is transitive, rudimen-199

tarily closed and ω ∈ B, (ii) for all x ∈ B and all y, f , if f : x<ω → trancl(y) is a surjection200

then y ∈ B, and (iii) for every transitive x ∈ B and a ⊆ x there are club many countable201

elementary substructures of (x, a). (So o(B) = rank(B) is a cardinal; if ω < κ ≤ Ord then202

Hκ is an operator background, and under ZFC these are the only operator backgrounds.)203

Let B be an operator background. A set C is a cone of B iff there is a ∈ B such that204

C is the set of all x ∈ B such that a ∈ J1(x̂). With a, C as such, we say C is the cone205

above a. If b ∈ J1(a) we say C is above b. A set D is an swo’d cone of B iff D = C ∩S,206

for some cone C in B, and where S is the class of explicitly swo’d sets. Here D is (the207

swo’d cone) above a iff C is (the cone) above a. A cone is a cone of B for some operator208

background B. Likewise for swo’d cone. a209

We will deal with F -premice where F is some operator. As in [15], there are two main210

classes of operators we have in mind: mouse operators and (iteration) strategy operators. We211

will now give some abstract framework for this, and will discuss the specific types of operators212

later in detail later. In the definition of pre-operator below, the reason we incorporate the213

variable i is as follows. Suppose we want to build a strategy premouse N , i.e. a J -model in214

which the B-predicates are used to code some fragment of an iteration strategy Σ (see 3.7215

for a precise definition). Suppose we feed Σ is fed into N by always providing b = Σ(T ),216

for the <N -least tree T for which this information is required. So given a reasonably closed217

level P /N , the choice of which tree T should be processed next will usually depend on the218

information regarding Σ already encoded in P (its history). Using an operator F to build219

N , then F(i,P) will be a structure extending P and over which b = Σ(T ) is encoded. The220

variable i should be interpreted as follows. When i = 1, we respect the history of P when221

selecting T . When i = 0 we ignore history when selecting T .222

Definition 2.8. Let B be an operator background. A pre-operator over B with domain223

D is a function F : D → B where for some (maybe swo’d) cone C = CF of B:224

– D ⊆ {0, 1} × C,225

– for all X ∈ C we have (0, X) ∈ D,226

– for all (1, X) ∈ D, X is a J -model over some X1 ∈ C,227

and for each (i,X) ∈ D, Fi(X) = F(i,X) is a J -model over X such that for each P E Fi(X),228

P is fully sound. (Note that P is a J -model over X, so soundness is in this sense.)229

Let F , D,B be as above. For a ∈ B we say that a is a base for F iff CF contains the230

(swo’d) cone above a. We say F is forgetful iff F0(X) = F1(X) whenever (0, X), (1, X) ∈ D,231
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and whenever X is a J -model over X1, and X1 is a J -model over X2 ∈ CF and X↓X2 is232

acceptable, F1(X) = F1(X↓X2). Otherwise we say F is historical. We say F is basic iff233

for all (i,X) ∈ D and P E Fi(X), we have EP = ∅. We say F is projecting iff for all234

(i,X) ∈ D, we have ρ
Fi(X)
ω = X. a235

At times we write F(X) instead of Fi(X). Note that B, CF are determined by dom(F).236

Here are some examples of the above terminology. Strategy operators (to be explained in237

more detail later) are basic, and as usually defined, projecting and historical. The operator238

F(X) = X# is forgetful and projecting, and not basic.239

Definition 2.9. For any P and any ordinal α ≥ 1, the (pre-)operator J m
α ( · ;P ) is defined240

as follows.13 For X such that P ∈ J1(X̂), let J m
α (X;P ) be the J -model M over X, with241

parameter P , such that bMc = Jα(X̂) and for each β ∈ [1, α], M|β is passive. Clearly242

J m
α ( · ;P ) is basic and forgetful. If P = ∅ or we wish to supress P , we just write J m

α ( · ). a243

Definition 2.10 (Potential F -premouse). Let F be a pre-operator and b ∈ CF . A potential244

F-premouse over b is a J -model M over b such that there is an ordinal ι > 0 and an245

increasing, closed sequence 〈ζα〉α≤ι of ordinals such that for each α ≤ ι, we have:246

1. 0 = ζ0 ≤ ζα ≤ ζι = l(M) (so M|ζ0 = b and M|ζι =M).247

2. If 1 < ι then M|ζ1 = F0(b).248

3. If 1 = ι then M E F0(b).249

4. If 1 < α + 1 < ι then M|ζα+1 = F1(M|ζα)↓b.250

5. If 1 < α + 1 = ι, then M E F1(M|ζα)↓b.251

6. If α is a limit then M|ζα is B-passive.252

We say that M is (F-)whole iff, if ι = α + 1 then M = F1(M|ζα)↓b.253

A (potential) F-premouse is a (potential) F -premouse over b, for some b. a254

Note that if F is over B and M is a potential F -premouse then o(M) ≤ o(B).255

Definition 2.11. Let F be a pre-operator and b ∈ CF . Let N be a whole F -premouse over256

b. A potential continuing F-premouse over N is a J -modelM over N such thatM↓b257

is a potential F -premouse over b. (Therefore N is a whole strong cutpoint of M.)258

We say that M (as above) is whole iff M↓b is whole.259

A (potential) continuing F-premouse is a (potential) continuing F -premouse over260

b, for some b. a261

13The “m” is for “model”.
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Definition 2.12. An operator over B is a pre-operator F over B such that for every262

sound whole F -premouse M∈ B, (1,M) ∈ dom(F).263

We say that an operator F is uniformly Σ1 iff there are Σ1 formulas ϕ1 and ϕ2 in L−0264

such that for all (continuing) F -premice M, then the set of whole proper segments of M is265

defined over M by ϕ1 (ϕ2). For such an operator F , let ϕFwh denote the least such ϕ1.266

Given a J -model R and ϕ in L−0 -Σ1 and P /R, we say that P is ϕ-putatively whole267

(for R) iff R � ϕ(P). a268

From now on we will deal exclusively with operators (as opposed to the more general269

pre-operators).270

Definition 2.13. Let F be an operator over B and M a (continuing) F -premouse.271

If EM 6= ∅ we say that EM is non-F (forM) iffM is a limit of whole proper segments.272

Otherwise we say that EM is an F-extender (for M).273

(F-)Iteration trees, (F-)iterability and countable (F-)iterability14 for (continu-274

ing) F -premice over a are defined as for standard premice, with the conditions that for T275

to be an F -iteration tree, (i) for all α + 1 < lh(T ), ETα = E(MT
α |γ) for some γ, and ETα is276

non-F for MT
α ; (ii) for all α + 1 < lh(T ), MT

α is a (continuing) F -premouse over a; (iii) if277

lh(T ) = α + 1 then MT
α is wellfounded and MT

α |o(B) is a (continuing) F -premouse. In the278

iteration game, the first player to break any rule loses, and if no rules are broken player II279

wins.15 When there is no risk of ambiguity, we will drop the prefix “F -”.16
280

We define the term k-maximal, regarding F -iteration trees T , as in [21, Definition 3.4],281

except that for α + 1 < β + 1 < lh(T ), we only require that lh(ETα ) ≤ lh(ETβ ), instead of282

requiring that lh(ETα ) < lh(ETβ ). a283

Remark 2.14. This modification to k-maximality is non-trivial because we are permitting284

premice with superstrong extenders. For example, we might have that ET0 is type 2 and ET1285

is superstrong with crit(ET1 ) the largest cardinal ofMT
0 |lh(ET0 ), in which caseMT

2 is active286

but o(MT
2 ) = lh(ET1 ), and therefore we might have lh(ET2 ) = lh(ET1 ).287

The preceding example is essentially general. It is easy to show that if T is k-maximal288

and α + 1 ≤ β < lh(T ) then either lh(ETα ) < o(MT
β ) and lh(ETα ) is a cardinal of MT

β , or289

β = α + 1 and lh(ETα ) = o(MT
α+1) and ETα is superstrong and MT

α+1 is type 2. Therefore if290

α + 1 < β + 1 < lh(T ) then ν(ETα ) < ν(ETβ ), and if α + 1 ≤ β < lh(T ) then ETα �ν(ETα ) is291

not an initial segment of any extender on E+(MT
β ).292

14The latter is ω1-iterability (and ω1 + 1-iterability if AD fails) for countable substructures; the iterability
might literally be, say, (k, ω1)-iterability.

15Therefore, if, for example, B = Hω1
and T is an F-iteration tree of length ω1 + 1 and MT0 is countable,

then player I cannot make any move extending T without losing, as o(MTω1
) > ω1 and therefore MTω1

is not
an F-premouse, so any extension of T made by player I would violate rule (ii).

16We will consider distinct operators F , Y , such that every F-premouse is also a Y -premouse.

10



The comparison algorithm needs to be modified slightly. Say we are comparing models293

M,N , via padded k-maximal trees T ,U , respectively. Say we have produced T �α + 1 and294

U�α + 1. Let γ be least such that MT
α |γ 6= MU

α |γ. If only one of these models is active,295

then we use that active extender next. Suppose both are active. If one active extender is296

type 3 and one is type 2, then we use only the type 3 extender next. Otherwise we use both297

extenders next. With this modification, and with the remarks in the preceding paragraph,298

the usual proof that comparison succeeds goes through.299

The reader might wonder why we code F -extenders with Ė instead of Ḃ. The problem300

with using Ḃ is that we need to consider fine structure, including taking cores and forming301

fine-structural ultrapowers, of arbitrary segments of F -premice, even non-whole segments.302

We will also have occasion to form iteration trees on F -premice which use F -extenders.303

Thus, if we had ḂM code a type 3 extender, it would be natural to treat the fine structure304

of M at the squashed level. This would complicate our presentation of fine structure for305

J -models. So it seems to make more organizational sense to have F -extenders coded with306

Ė. This could in general make it difficult to distinguish between the F - and non-F extenders307

of an F -premouse, but this distinction is easy when F is uniformly Σ1.308

The following lemma was stated in [17] in the case that a = R.309

Lemma 2.15. Let M be an acceptable J -structure over a. Let λ ∈ o(M). Then λ is an310

a-cardinal of M iff λ ≥ ΘM and λ is a cardinal of M.311

Proof Sketch. We write Mα = J SM
α (â). Assume θ = ΘM < oM, and let λ ≥ θ and312

g : â<ω × η<ω → λ witness that λ is not an a-cardinal in M. For each ~β ∈ η<ω, let313

g~β(~x) = g(~x, ~β). Let ≤~β, ϕ~β be the prewellorder (of â) and norm determined by g~β. Then314

≤~β, ϕ~β ∈Mθ, and moreover, the function ~β 7→ ϕ~β is definable overMα, given g is definable315

over Mα. It is easy to use this to show that λ is not a cardinal in M.316

The following lemma is an easy enough consequence:317

Lemma 2.16. Let F be a projecting, uniformly Σ1 operator and let b ∈ CF . Let M be an318

F-premouse. Let 0 < η < l(M) be such that M|η is whole and let γ ∈ [ΘM, o(M|η)] be a319

cardinal of M. Then γ ≤ η and o(M|γ) = γ and M|γ is a limit of whole proper segments320

of M.321

Definition 2.17. Let x be transitive. We say that countable x-based hulls are club iff322

for all a ⊆ x̂<ω, there are club many countable elementary substructures of (x̂<ω, a).323

Let F be an operator over B with a base in HC. (Therefore if x ∈ CF then for club324

many countable hulls x̄ of x, x̄ ∈ CF .)325
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Let M be an F -premouse over a and let n ≤ ω (and η ≤ o(M)). We say that M is326

countably (above-η) n-F-iterable iff for club many countable substructures M̄ of M,327

M̄ is an (above-η̄) (n, ω1 + 1)-F -iterable F -premouse (where η̄ is the collapse of η).328

Let x ∈ CF and assume that countable x-based hulls are club. Then LpF(x) denotes the329

stack of all countably ω-F -iterable F -premice M over x such that M is fully sound and330

projects to x.17 Assuming that R ∈ B, for X ⊆ HC, LpF(R, X) denotes LpF((HC, X)).18
331

Let N be a whole F -premouse in B. Then LpF+(N ) denotes the stack of all continuing F -332

premiceM overN such thatM is fully sound, ρMω = N andM↓aN is countably above-o(N )333

(ω, ω1 + 1)-F -iterable, if there is any such M; otherwise LpF+(N ) = N . a334

From now on, whenever we refer (implicitly) to LpF or LpF+, we are making the assump-335

tions above. Note that if x is countable then countable x-based hulls are club. We can now336

describe the kinds of non-basic operators we will be interested in:337

Definition 2.18 (Mouse operator). Let Y be a basic, projecting, uniformly Σ1 operator,338

over B.339

A lower Y -mouse operator F is an operator over B such that for each (i,X) in its340

domain, Fi(X) E LpY (X).341

A continuing Y -mouse operator F is an operator over B with domain D such that342

for each (0, X) ∈ D, F0(X) E LpY (X), and for each (1, X) ∈ D, X is a sound whole343

Y -premouse and X / F1(X) E LpY+(X).344

Let F be a continuing Y -mouse operator. We say that F is whole iff for all (0, X) ∈ D,345

F0(X) is Y -whole, and for all (1, X) ∈ D, either F1(X) is Y -whole, or F1(X)↓aX is not346

sound (and therefore F1(X) = LpY+(X)). a347

The next lemma is easy:348

Lemma 2.19. Let F be a whole continuing Y -mouse operator. Then every F-premouse is349

a Y -premouse.350

We now describe background extender constructions to build F -mice.351

Definition 2.20. Let N be an F -premouse and k ≤ ω. Then N is k-F-solid iff N is352

k-solid, and for each i ≤ k, Ck(N ) is an F -premouse. a353

17Our assumptions ensure that LpF (x) is indeed a stack. For assume that x is infinite and letM1,M2 be
J -models meeting the criteria. We can code M1 ⊕M2 with some structure (x̂<ω, a) with a ⊆ x̂<ω. Taking
a countable hull, we get M̄1,M̄2 over x̄, which we can compare, to deduce that M̄1 = M̄2, as usual; for
the latter we just need iterability, the ISC and fine structure. (Because all models which appear during the
comparison are F-premice, all extenders used are non-F .) If x is finite, it is easier.

18Since R is not transitive, this is not an abuse of notation.
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Definition 2.21. Given a J -model N over a, and M /N such that M is fully sound, the354

M-drop-down sequence of N is the sequence of pairs 〈(Qn,mn)〉n<k of maximal length355

such that Q0 =M and m0 = ω and for each n+ 1 < k:356

1. M /Qn+1 E N and Qn E Qn+1,357

2. every proper segment of Qn+1 is fully sound,358

3. ρmn(Qn) is an a-cardinal of Qn+1,359

4. 0 < mn+1 < ω,360

5. Qn+1 is (mn+1 − 1)-sound,361

6. ρmn+1(Qn+1) < ρmn(Qn) ≤ ρmn+1−1(Qn+1). a362

Definition 2.22. Let F be an operator over B and let C be some class of E-active F -363

premice. Let b ∈ CF and χ ≤ o(B) + 1. A (C-certified) LF [E, b]-construction (of364

length χ) is a sequence 〈Nα〉α<χ with the following properties.365

We have N0 = b and N1 = F(0, b).366

Let 0 < α < χ. Then α ≤ o(B) and Nα is an F -premouse over b. If α is a limit then367

Nα = lim infβ<αNβ. Now suppose that α + 1 < χ. Then either:368

(i) Nα is a passive limit of whole proper segments and Nα+1 = (Nα, G) for some extender369

G (with Nα+1 ∈ C); or370

(ii) Nα is ω-F -solid. Let Mα = Cω(Nα). Let M be the largest whole segment of Mα.371

So either Mα = M or Mα↓M / F1(M). Let N E F1(M) be least such that either372

N = F1(M) or for some k < ω, (N↓b, k + 1) is on the Mα-drop-down sequence of373

N↓b. Then Nα+1 = N↓b. Note that Mα /Nα+1. a374

We now proceed to describe some consendation properties for operators F under which375

together whether sufficient iterability ensure that LF [E]-constructions do not break down.376

Definition 2.23. Let Y be an operator. We say that Y condenses coarsely iff for all377

i ∈ {0, 1} and (i, X̄), (i,X) ∈ dom(Y ), and all J -modelsM+ over X̄, if π :M+ → Yi(X) is378

fully elementary, then379

– if i = 0 then M+ E Y0(X̄); and380

– if i = 1 and X is a sound whole Y -premouse, then M+ E Y1(X̄). a381
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Lemma 2.24. Let Y be a uniformly Σ1 operator which condenses coarsely and let M be an382

E-passive whole Y -premouse. Let π : N → M be fully elementary, where aN ∈ CY . Then383

(a) N is a Y -premouse and for all P /N , P is whole iff π(P) is whole. Moreover, (b) if M384

is sound or a limit of whole proper segments then N is whole.385

Proof. If M = Y0(aM) then a slight variant of the argument to follow shows that N =386

Y0(aN ), which suffices. So assume that Y0(aM) /M. We claim then that for all P / N ,387

N � ϕY (P) iff P is a whole Y -premouse. This can be proved by induction on P . We again388

skip the argument as it is similar to the one to follow.389

It now follows easily that if Q E N and Q is a limit of whole proper segments P , then390

BQ = ∅ and so Q is a (whole) Y -premouse. In particular, if M is a limit of whole proper391

segments then N is likewise and the lemma follows easily. So suppose instead thatM has a392

largest whole proper segment; then this is π(P) where P is the largest whole proper segment393

of N . Now M = Y1(π(P))↓aM. So by coarse condensation, N↓P E Y1(P), so N is a394

Y -premouse, giving (a). Now suppose that M is sound but N↓P / Y1(P). Then there is395

a Y -premouse M′ such that M /M′ and l(M′) = l(M) + 1. Because Y is uniformly Σ1,396

M′ � ϕY (M). But ϕY ∈ L−0 , so by elementarity,N is sound and (J m
1 (N ;PN )↓aN ) � ϕY (N )397

and there is a Y -premouse N ′ such that N /N ′ and bN ′c = J1(N ). But then N ′ � ϕY (N ),398

so N is whole, contradiction. This proves (b).399

Lemma 2.25. Let Y be a uniformly Σ1 operator which condenses coarsely and let M be an400

E-active Y -premouse. Let π : N → M be a weak 0-embedding, where aN ∈ CY . If M is401

type 3, suppose also that Ult(Msq, EM) is a Y -premouse. Then N is a Y -premouse.402

Proof. Consider the case that M is type 3. Let ψ : Ult(N sq, EN )→ R = Ult(Msq, EM) be403

the map induced by π. Let ψ′ = ψ�(N||o(N )). Then ψ′ : N||o(N ) → R|ψ(o(N )) is fully404

elementary. Now apply 2.24 and 2.6.405

Definition 2.26. Let M,N be k-sound J -models over a, b and π : M → N . Then π is406

(weakly, nearly) k-good iff π�a ∪ {a} = id and π is a (weak, near) k-embedding.407

If π : M → N is a weak 0-embedding then π is ν-preserving iff, if M,N are type408

3 (so literally π : Msq → N sq) and a, f ∈ Msq are such that ν(EM) = [a, f ]MEM , then409

ν(EN ) = [π(a), π(f)]NEN . a410

Remark 2.27. We use the following in place of the notion of condenses well (see [23, 2.1.10]).411

We explain why we made this replacement in Appendix A.412

Definition 2.28. Let Y be a projecting, uniformly Σ1 operator. We say that Y condenses413

finely iff Y condenses coarsely and we have the following. Let k < ω. Let M∗ be a Y -414

premouse over a, with a largest whole proper segmentM, such thatM+ =M∗↓M is sound415
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and ρk+1(M+) = M. Let P∗, ā,P ,P+ be likewise. Let N be a sound whole Y -premouse416

over ā. Let G ⊆ Col(ω,P ∪ N ) be V -generic. Let N+, π, σ ∈ V [G], with N+ a sound417

J -model over N such that N ∗ = N+↓ā is defined (i.e. acceptable). Suppose π : N ∗ →M∗
418

is such that π(N ) =M and either:419

1. M∗ is k-sound and N ∗ = Ck+1(M∗); or420

2. (N ∗, k + 1) is in the N -dropdown sequence of N ∗, and likewise (P∗, k + 1),P , and421

either:422

(a) π is k-good, or423

(b) π is fully elementary, or424

(c) π is a weak k-embedding, σ : P∗ → N ∗ is k-good, σ(P) = N and π ◦ σ ∈ V is a425

near k-embedding.426

Then N+ E Y1(N ).427

We say that Y almost condenses finely iff N+ E Y1(N ) whenever the hypotheses428

above hold with N+, π, σ ∈ V . a429

In the preceding definition, if N ∗,M∗ are type 3, and so dom(π) = (N ∗)sq, then by 2.16,430

o(M) < crit(EM
∗
) < ν(EM

∗
), so it is reasonable to say that π(N ) =M, for instance.431

Lemma 2.29. Let Y be an operator over B with base in HC. Suppose that Y almost432

condenses finely. Then Y condenses finely.433

Proof. Suppose not. Let M∗,P∗,N+, etc, as in 2.28, constitute a counterexample. Let434

M$ = Y1(M) and P$,N $ likewise. Since M∗ has a largest whole proper segment, M∗ and435

all other relevant objects are in B. Note that N $ 6E N+. For if N $ / N+ then N $↓aN is436

a sound Y -premouse and there is a Y -premouse N ′ such that bN ′c = J1(N $). But then437

because Y is uniformly Σ1 and using π, Y1(M) /M+, contradiction.438

Let P = Col(ω,P ∪ N ). Let X ∈ B be transitive, containing all relevant objects, and439

such that X � (ZF−)−ε. (For any A ∈ B there is γ such that Lγ(A) � (ZF−)−ε, so there is440

such a γ < o(B).) In particular, in X we have M,N ,P , etc, and have p ∈ P and P-names441

Ñ+, π̃, σ̃ for N+, π, σ, and in X, p forces that442

“M∗, Ñ+,N $, etc, satisfy the hypotheses of 2.28 and Ñ+ 6E N $ & N $ 6E Ñ+”. (2.1)

Let π : Z → X be elementary with Z countable, and everything relevant in rg(π). Let443

π(N Z) = N , etc. Let G ⊆ Col(ω,PZ ∪ N Z) be Z-generic with pZ ∈ G. Then because444
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Y condenses coarsely and by 2.24 and 2.25, (M∗)Z , (Ñ+)ZG, etc, satisfy the hypotheses of445

2.28, and (N $)Z E Y1(N Z). But then because Y almost condenses finely, (Ñ+)ZG E Y1(N Z).446

Therefore either (N $)Z E (Ñ+)ZG or (Ñ+)ZG E (N $)Z , contradicting line 2.1.447

Definition 2.30. An F-putative iteration tree is a putative F -iteration tree. (That is,448

every model of T except the last, if there is one, is an F -premouse, and every extender used449

in T is non-F).450

An F-putative iteration strategy for a J -model N is a function Σ such that for each451

limit length F -tree T on N , via Σ, Σ(T ) is a T -cofinal branch b. (Thus, player II wins452

any round of the iteration game which has a last model which is not an F -premouse, and in453

particular, wins by default if N is not an F -premouse.) a454

Lemma 2.31. Let Y,F be uniformly Σ1 operators with bases in HC. Suppose that Y con-455

denses finely. Suppose that F is a whole continuing Y -mouse operator. Then (a) F con-456

denses finely. Moreover, (b) let M be an F-whole F-premouse. Let π : N → M be fully457

elementary with aN ∈ CF . Then N is an F-whole F-premouse. So regarding F , the con-458

clusion of 2.23 may be modified by replacing “E” with “=”.459

Proof Sketch. Let F , Y be over B. Consider (a). By 2.29 it suffices to see that F almost460

condenses finely. We just consider the case of this proof when (2c) of 2.28 holds (omitting461

the proof that F condenses coarsely), since this illustrates the main points. So suppose that462

M∗, etc, are as in (2c) of 2.28.463

Let us first observe that N ∗ is a Y -premouse. This is easy if P∗ has no largest Y -whole464

proper segment, so suppose otherwise, and let PY be the largest. Since P is F -whole and F is465

whole, therefore P E PY /P∗. ThenMY = π(σ(PY )) is the largest Y -whole proper segment466

ofM∗, so by 2.24 and 2.25 and using π, NY = σ(PY ) is a sound Y -whole Y -premouse. Also,467

(P∗, k + 1) is on the PF -dropdown sequence of P∗, and so on the PY -dropdown sequence of468

P∗. Likewise N ∗,NY . Since Y condenses finely, this implies that N+ E Y1(NY ), so N ∗ is a469

Y -premouse.470

So N+ is a sound continuing Y -premouse (over N ) and ρk+1(N+) = N . We claim471

that N+ is countably k-Y -iterable. Given this, N+ E LpY+(N ), so either N+ E F1(N ) or472

F1(N ) E N+. But then N+ E F1(N ) because if F1(N ) / N+ then the usual argument473

shows that F1(M) /M+, a contradiction. So it suffices to prove this claim.474

Let X ∈ B be transitive and containing all relevant objects. Let τ : Z → X be475

elementary, with Z countable, and such that τ−1(M∗,P∗,N ) are Y -premice and τ−1(M+)476

is k-Y -iterable. Using τ−1(π) we can lift (above-τ−1(N )) Y -putative trees on τ−1(N+) to477

Y -trees on τ−1(M+). Let T on τ−1(N+) be via this strategy, of length α + 1. Then using478

that Y condenses finely and standard fine structure, one can show that MT
α is a Y -premouse.479
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(One extra point here is the following. Suppose MπT
α is type 3. Then literally the copy map480

πα : (MT
α )sq → (MπT

α )sq, so it is not immediate that MT
α is a Y -premouse. Let481

ψ : Ult(MT
α , E(MT

α ))→ Ult(MπT
α , E(MπT

α ))

be the map induced by πα. Then using ψ and πα together one can show that MT
α is well-482

founded and is a Y -premouse.)483

Part (b) follows from 2.24 and 2.25, and the observation that if N has a largest F -whole484

proper segment NF and N is unsound then N↓NF = LpY+(NF), and so N↓NF = F1(NF).485

This completes the sketch of the proof.486

Definition 2.32. For T an iteration tree and α < lh(T ) let baseT (α) denote the least487

β ≤T α such that (β, α]T does not drop in model or degree. (Therefore either β = 0 or β is488

a successor.) Also let M∗T
0 = MT

0 and i∗T0 = id. a489

Definition 2.33. Let C = 〈Nα〉α≤λ be an LF [E, b]-construction. Let k ≤ ω and suppose490

that Nλ is k-F -solid. Let R be a k-sound F -premouse over b and let π : R → Ck(Nλ) be491

fully elementary. Let T be an F -putative iteration tree on R, with degT (0) = k. We say492

that T is (π,C)-realizable iff for every α < lh(T ), letting β = baseT (α) and m = degT (α),493

there is ζ ≤ λ such that:494

– if [0, α]T does not drop in model or degree then ζ = λ, and let τ = π,495

– if ζ = λ then m ≤ k,496

– if [0, α]T drops in model or degree then there is a ν-preserving near m-embedding497

τ : M∗T
β → Cm(Nζ), and498

– if M∗T
β is not type 3 then there is a weak m-embedding σ : MT

α → Cm(Nζ) such that499

σ ◦ i∗Tβ,α = τ .500

– if M∗T
β is type 3 then there is a weak m-embedding σ : R → Cm(Nζ) such that i∗Tβ,α = τ ,501

where R is “(MT
α )sq”.19 a502

Lemma 2.34. Let F be a projecting, uniformly Σ1 operator over B, with a base in HC,503

and which condenses finely. Let C = 〈Nα〉α<χ be an LF [E, b]-construction. Suppose that504

for all α < χ and all R, if Nα,R are F-premice of type 3, R is (0, ω1 + 1)-iterable and505

π : Rsq → N sq
α is Σ0-elementary, then R is not superstrong. Then:506

19(MTα )sq might not make literal sense, if say MTα is not wellfounded. By “(MTα )sq” we mean that either
α = ξ + 1 and R = Ultm((M∗Tα )sq, ETξ ), or α is a limit and R is the direct limit of the structures (MTξ )sq

for ξ ∈ [β, α)T , under the iteration maps.

17



(1 ) If χ is a limit there is a unique Nχ such that C ̂ 〈Nχ〉 is an LF [E, b]-construction.507

(2 ) Suppose χ = λ+ 1, Nλ is ω-F-solid and λ ∈ B. Then there is a unique Nχ such that508

C ̂ 〈Nχ〉 is an LF [E, b]-construction and Cω(Nλ) /Nχ.509

(3 ) Suppose χ = λ+ 1 and k < ω is such that Nλ is k-F-solid and for a club of countable510

elementary π :M→ Ck(Nλ), there is a Y -putative, (k, ω1, ω1 + 1)-iteration strategy Σ511

for M, such that every T via Σ is (π,C)-realizable. Then Nλ is (k + 1)-F-solid.512

Proof. We will use 2.24 without explicit mention. Consider (1). Let Nχ = lim infα<λNα.513

Then Nχ is a passive limit of sound whole proper segments, so Nχ is an F -premouse.514

Now consider (2). LetMλ = Cω(Nλ) and letM be the largest F -whole segment ofMλ.515

We must verify that Nλ+1, defined as in 2.22(ii) (with α = λ), is well-defined (i.e. acceptable)516

and is an F -premouse. LetN also be as there. Since every segment ofMλ is sound, it suffices517

to see that for every R′/N , letting R = R′↓b, R is sound (by induction, we may assume that518

R is acceptable). We may assume thatMλ/R. We have ρ = ρω(Mλ) ≤ ρPω , for each (P , j+1)519

in theM-dropdown sequence ofMλ. Therefore ρ ≤ ρω(R). If ρ < ρω(R) then the soundness520

ofR′ implies that ofR. So suppose ρω(R) = ρ. Let k < ω be such that ρk+1(R) = ρ < ρk(R).521

Then as before, R is k-sound. Let p = pk+1(R). Then M ∈ H = HullRk+1(ρ ∪ p) because522

F is uniformly Σ1, and because H is cofinal in R if k = 0. Therefore H has every element523

of R which is in the M-drop-down sequence of R. It follows that M∪ {M} ⊆ H. Since524

ρk+1(R) ≤ o(M), ρk+1(R′) = M. Also, pk+1(R′) = pk+1(R)\(o(M) + 1) because R′ is525

(k + 1)-sound (including (k + 1)-solid). Therefore H = R.526

So it remains to verify that R is (k + 1)-solid. If k > 0 or pk+1(R′) 6= ∅, we have527

pk+1(R) = pk+1(R′) as before, so we are done. Suppose k = 0 and p1(R′) = ∅. Let let q528

be <lex-least such that M ∈ Hq = HullR1 (ρ ∪ q). Then Hq = R, as before. But we claim529

that q is 1-solid for R. For let us assume that q = {γ} for some ordinal γ, for simplicity.530

Then M /∈ Hγ = HullR1 (γ), and therefore Hγ is bounded in R, and therefore ThR1 (γ) ∈ R,531

as required. But then pR1 = q, so we are done.532

Now consider (3). We may assume that λ > 1, as the only extenders of N1 are F -533

extenders, so there are no non-trivial iteration trees on it. Let us also assume that Nλ has a534

largest F -whole proper segment, since the contrary case is similar but easier. ThenM∗ has535

a largest F -whole proper segment MF ; so M+ = M∗↓MF E F1(MF). If (M∗, k + 1) is536

not on theMF -drop-down sequence ofM∗, then the proof of (a) shows thatM∗ is (k+ 1)-537

sound, and therefore (k+1)-F -solid (the “F” since Ck+1(M∗) =M∗ in this case). So assume538

otherwise.539

If M∗ is whole let M′ = F1(M∗); otherwise let M′ = F1(MF). So M∗ ∈ M′. Let540

π′ : M̄′ → M′ be elementary, with M̄′ countable and π′(M̄) = M∗ for some M̄ and also541
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such that π = π′�M̄ is in the hypothesized club and ā = aM̄ ∈ CF . Because F condenses542

coarsely (and using 2.24 or 2.25), M̄ is an F -premouse. Now let Σ be an F -putative strategy543

for M̄ as hypothesized.544

Claim 2.35. Σ is an F-(k, ω1, ω1 + 1)-strategy for M̄.545

Proof Sketch. This is basically as in the proof of 2.31 (though here it is more important that546

condenses finely works with respect to weak embeddings as in (2c) of 2.28). One further547

point arises, however, in verifying that various models are in the right dropdown sequences548

in order to apply 2.28. For let T be via Σ, with last model MT
α ; say we want to apply549

2.28 in order to deduce that Q = MT
α is an F -premouse. Let m = degT (α). Then by [10,550

Corollary 2.20], ρQm+1 < ρQm; this helps to ensure that 2.28 applies. (Note that possibly [0, α]T551

does not drop in model or degree, so m = k, and crit(iT0,α) < ρM̄k+1. In this case, by [10],552

ρQk+1 = sup iT0,α“ρM̄k+1. We also need this observation in other places, because T need not be553

normal.)554

Let N̄ = Ck+1(M̄) and let τ : N̄ → M̄ be the core map. Then there is N̄F such that555

τ(N̄F) = M̄F . Then N̄F is a whole F -premouse, and is the largest ϕF -putatively whole556

proper segment of N̄ . And N̄ is a F -premouse because F condenses finely.557

Claim 2.36. (N̄ , k + 1) is on the N̄F -dropdown sequence of N̄ .558

Proof. Suppose not. We will show that N̄F /M̄F . But then (F(N̄F)↓ā) E M̄F , so N̄ ∈ M̄,559

a contradiction.560

Let ρ = ρk+1(M̄). Let (R, j) be the last element of the M̄F -dropdown sequence of M̄561

with R / M̄. So562

ρ < ρRj′ = ρRω = cardM̄(M̄F) ∈ rg(τ).

The negation of the claim implies that rg(τ) ∩ ρRω = ρ, so crit(τ) = ρ and τ(ρ) = ρRω . Let563

τ(S) = R, so τ�S : S → R is fully elementary and crit(τ) = ρSω. Therefore since F condenses564

finely, S is a F -premouse. We will show that S / M̄|τ(ρ), which suffices since N̄F E S.565

Let ξ ≤ l(S) be the supremum of ρ and all α ≤ l(S) such that S|α is E-active. Then566

ρ ≤ ξ ≤ l(M̄F). Let (Q, l′) be the last element of the S|ξ-dropdown sequence of S; so567

S|ρ E Q E S and ρQω = ρ. We claim that Q / M̄.568

For let P = τ(Q). We may assume that ρ < ρQ0 (by the ISC). So let l < ω be such that569

ρQl+1 = ρ < ρQl . Then P is (l, ω1, ω1 + 1)-F -iterable, since l-bounded trees T on P can be570

lifted to k-bounded trees U on M̄, using that F condenses finely.571

Now arguing as in [2] and [11], we obtain a strategy Σ′ for M̄ with the variant of the m-572

weak Dodd-Jensen property (see [11]) given by replacing all uses of near j-embeddings with573
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nearly j-good embeddings. Then using Σ′, the usual proof of condensation works, giving574

that Q / P , so Q / M̄|τ(ρ).575

Now S E Fα(Q) for some α ∈ Ord, and S ∈ R, and ρSω = ρ, and τ(ρ) is a cardinal of576

M̄. So o(S) < τ(ρ), and because M̄ is F -iterable, therefore S / M̄|τ(ρ).577

This completes the proof of the claim.578

Claim 2.37. M̄ is (k + 1)-universal.579

Proof. Since F condenses finely, and using Claim 2.36, the phalanx (M̄, N̄ , ρk+1(M̄)) is580

F -iterable, via lifting to M̄ using the maps (id, τ).581

Now we can adapt the usual proof of universality in the same manner that we adapted582

the proof of condensation above.583

Claim 2.38. N̄ = Ck+1(M̄) is (k + 1)-solid.584

Proof. This is proved similarly to the previous claim, given a couple of observations. Let585

p = pk+1(N̄ ). Let α ∈ p and q = p\(α+1). Let H be the transitive collapse of HullN̄k+1(α∪q);586

we need to see that H ∈ N̄ . As in the proof of (a), we may assume that α < cardN̄ (N̄F).587

Now let σ : H → N̄ be the uncollapse. So σ is a near k-embedding. If σ fails to be a588

k-embedding, i.e., if rg(σ) is bounded in ρk(N̄ ), then we easily have H ∈ N̄ . So assume589

σ is a k-embedding. Also as in the proof of (a), we may assume that N̄F ∈ rg(σ). Then590

ρHk+1 ≤ α < cardN̄ (N̄F), and so (N̄ , k + 1) is on the N̄F -dropdown sequence of N̄ .591

Now since F condenses finely, H is a F -premouse, and moreover, the phalanx (N̄ , H, α)592

is F -iterable, via lifting to N̄ (which is F -iterable via lifting to M̄). Now we can adapt the593

proof of solidity just as for universality.594

By elementarity, it follows that M∗ is (k + 1)-universal and N ∗ = Ck+1(M∗) is (k + 1)-595

solid. Therefore N ∗ is (k + 1)-sound. Because F condenses finely, N ∗ is an F -premouse.596

This completes the proof.597

3 Strategy premice598

We now proceed to defining Σ-premice, for an iteration strategy Σ. We first define the599

operator to be used to feed in Σ.600

Definition 3.1 (B(a, T , b), bN ). Let a,P be transitive, with P ∈ J1(â). Let λ > 0 and let601

T be an iteration tree20 on P , of length ωλ, with T �β ∈ a for all β ≤ ωλ. Let b ⊆ ωλ. We602

20We formally take an iteration tree to include the entire sequence
〈
MTα

〉
α<lh(T )

of models. So it is

Σ0(T ,P) to assert that “T is an iteration tree on P”.
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define N = B(a, T , b) recursively on lh(T ), as the J -model N over a, with parameter P ,21
603

such that:604

1. l(N ) = λ,605

2. for each γ ∈ (0, λ), N|γ = B(a, T �ωγ, [0, ωγ]T ),606

3. BN is the set of ordinals o(a) + γ such that γ ∈ b,607

4. EN = ∅.608

We also write bN = b. a609

It is easy to see that every initial segment of N is sound, so N is acceptable and is indeed610

a J -model (not just a J -structure).611

Suppose we are building a Σ-premouse N for an iteration strategy Σ. Suppose we have612

built some M E N , with M fairly closed, but there is T ∈ M for which M has not613

been instructed regarding Σ(T ). If T is the tree for which we next feed Σ(T ) into N614

(that is, immediately afterM), then we will have already fed Σ(T �α) intoM, for all limits615

α < lh(T ). We will then use B(M, T ,Σ(T )) to extendM, thus feeding in Σ(T ). Therefore if616

lh(T ) > ω then B(M, T ,Σ(T )) codes redundant information (the branches Σ(T �α)) before617

coding Σ(T ). This redundancy seems to allow one to prove slightly stronger condensation618

properties, given that Σ has nice condensation properties. It also simplifies the definition of619

Σ-premouse.22 The key facts are given in 3.3 below.620

In the next definition and in the sequel we need the notions of hull embedding, hull621

condensation and branch condensation; see [6, 1.29, 1.30, 2.14].622

Definition 3.2. Let Σ be a partial iteration strategy. Let C be a class of iteration trees,623

closed under initial segment. We say that (Σ, C) is suitably condensing iff for every T ∈ C624

such that T is via Σ and lh(T ) = λ+ 1 for some limit λ, either (i) Σ has hull condensation625

with respect to T , or (ii) bT does not drop and Σ has branch condensation with respect to626

T . a627

Lemma 3.3. Let a, T , b be as in 3.1, and let R = B(a, T , b). Let γ ≤ l(R). Let R̄ be a628

J -structure over ā with parameter P̄. Suppose there is a partial embedding π : R̄ → R|γ629

such that there is an ∈R̄-cofinal set X ⊆ R̄ with630

X ∪ o(R̄) ∪ P̄ ∪ {T̄ } ⊆ dom(π),

21P = MT0 is determined by T .
22Some difficulties that arise if one codes Σ by only feeding Σ(T ) itself are discussed in Appendix B.
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and π(T̄ ) = T , and π is Σ0-elementary, for L0. Let B̄ = BR̄. If γ = l(R) then suppose that631

bR is a T -cofinal branch. Then:632

1. R̄ is a J -model over ā and B̄ ⊆ [o(ā), o(R̄)). Let γ̄ = l(R̄). Then ωγ̄ ≤ lh(T̄ ) and633

letting b̄ = bR̄ (i.e., α ∈ b̄ iff o(M̄) + α ∈ B̄), then R̄ = B(M̄, T̄ �ωγ̄, b̄).634

2. If π is Σ1-elementary on X, with respect to L0, then b̄ is cofinal in ωγ̄.635

3. Suppose b̄ is cofinal in ωγ̄. Then b̄ is a T̄ �ωγ̄-cofinal branch, and:636

(a) Suppose that ωγ̄ < lh(T̄ ). Then b̄ = [0, ωγ̄]T̄ , and therefore R̄ /B(M̄, T̄ , b∗) for637

any b∗ ⊆ lh(T̄ ).638

(b) Suppose that ωγ̄ = lh(T̄ ). Let ωγ′ = supπ“ωγ̄. Then π induces a hull embedding639

from T̄ ̂ b̄ to T ′ = (T ̂ b)�ωγ′ + 1.23
640

(c) Let C be the set of initial segments of T . Suppose that T is via Σ, where Σ is641

some partial strategy for P such that (Σ, C) is suitably condensing. Suppose that642

P̄ = P and π�P̄ = id. Then (T̄ �ωγ̄) ̂ b̄ is via Σ.643

Proof. We just prove 3(a). We have ωγ̄ < lh(T̄ ). Let ωγ′ = supπ“ωγ̄, so ωγ′ < lh(T ).644

We have c = [0, ωγ̄]T̄ ∈ M̄, and note that we may assume that c ∈ X. We have π“c ⊆645

π(c) = [0, π(ωγ̄)]T , and π“c is cofinal in ωγ′. Therefore π“c ⊆ [0, ωγ′]T . But similarly,646

π“b̄ ⊆ [0, ωγ′]T , because π“b̄ ⊆ bR|γ ∩ ωγ′ and π“b̄ is cofinal in ωγ′. But then c = b̄, as647

required.648

We next describe the overall structure of potential Σ-premice.649

Definition 3.4. Let ϕ be an L0-formula. Let P be transitive. Let M be a J -model (over650

some a), with parameter P . Let T ∈ M. We say that ϕ selects T for M, and write651

T = T Mϕ , iff652

(a) T is the unique x ∈M such that M � ϕ(x),653

(b) T is an iteration tree on P of limit length,654

(c) for every N /M, we have N 6� ϕ(T ), and655

(d) for every limit λ < lh(T ), there is N /M such that N � ϕ(T �λ). a656

The generality in the indexing device type ϕ in the following definition was probably657

motivated by Sargsyan’s [6, Definition 1.1].658

23By our assumptions, if γ′ = lh(T ) then b is T -cofinal.
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Definition 3.5 (Potential P-strategy-premouse, ΣM). Let ϕ ∈ L0. Let P , a be transitive659

with P ∈ J1(â). A potential P-strategy-premouse (over a, of type ϕ) is a J -modelM660

over a, with parameter P , such that the B operator is used to feed in an iteration strategy661

for trees on P , using the sequence of trees naturally determined by SM and selection by ϕ.662

We let ΣM denote the partial strategy coded by the predicates BM|η, for η ≤ l(M).663

In more detail, there is an increasing, closed sequence of ordinals 〈ηα〉α≤ι with the fol-664

lowing properties. We will also define ΣM|η for all η ∈ [1, l(M)] and Tη = T Mη for all665

η ∈ [1, l(M)).666

1. 1 = η0 and M|1 = J m
1 (a;P) and ΣM|1 = ∅.667

2. l(M) = ηι, so M|ηι =M.668

3. Given η ≤ l(M) such that BM|η = ∅, we set ΣM|η =
⋃
η′<η ΣM|η

′
.669

Let η ∈ [1, l(M)]. Suppose there is γ ∈ [1, η] and T ∈ M|γ such that T = T M|γϕ , and T670

is via ΣM|η, but no proper extension of T is via ΣM|η. Taking γ minimal such, let Tη = T M|γϕ .671

Otherwise let Tη = ∅.672

4. Let α+ 1 ≤ ι. Suppose Tηα = ∅. Then ηα+1 = ηα + 1 and M|ηα+1 = J m
1 (M|ηα;P)↓a.673

5. Let α + 1 ≤ ι. Suppose T = Tηα 6= ∅. Let ωλ = lh(T ). Then for some b ⊆ ωλ, and674

S = B(M|ηα, T , b), we have:675

(a) M|ηα+1 E S.676

(b) If α + 1 < ι then M|ηα+1 = S.677

(c) If S EM then b is a T -cofinal branch.24
678

(d) For η ∈ [ηα, l(M)] such that η < l(S), ΣM|η = ΣM|ηα .679

(e) If S EM then then ΣS = ΣM|ηα ∪ {(T , bS)}.680

6. For each limit α ≤ ι, BM|ηα = ∅. a681

Definition 3.6 (Whole). LetM be a potential P-strategy-premouse of type ϕ. We sayM682

is ϕ-branch-whole (or just branch-whole if ϕ is fixed) iff for every η < l(M), if Tη 6= ∅683

and Tη 6= Tη′ for all η′ < η, then for some b, B(M|η, Tη, b) EM.25 a684

24We allow MTb to be illfounded, but then T ̂ b is not an iteration tree, so is not continued by ΣM.
25ϕ-whole depends on ϕ as the definition of Tη does.

23



Definition 3.7 (Potential Σ-premouse). Let Σ be a (partial) iteration strategy for a transi-685

tive structure P . A potential Σ-premouse (over a, of type ϕ) is a potential P-strategy686

premouse M (over a, of type ϕ) such that ΣM ⊆ Σ.26 a687

Definition 3.8. Let R be an amenable J -structure for L0. Let β < l(R) and let n < ω.688

Let H = SSRβ+n(âR) (the “S” is in the sense of “S-hierarchy”). Then we define689

R o (β, n) = (H,E,B, S, aR,PR)

(an L0-structure), where E = ER ∩H, B = BR ∩H and S = SR ∩H. a690

Note that if R is a J -model and β < l(R) then bR|βc = bR o (β, 0)c, but the active691

predicates of R|β and R o (β, 0) can differ.692

Definition 3.9. Let R,M be J -structures for L0. Let π : R →M be a partial map. Then693

π is a very weak 0-embedding iff π is Σ0-elementary on its domain (with respect to L0),694

there is X ⊆ R, with X cofinal in o(R), and695

o(R) ∪PR ∪ {R o (β, n) ‖ o(R o (β, n)) ∈ X} ⊆ dom(π),

and π is Σ1-elementary on parameters in X.696

A class C of premice is very condensing iff for all M ∈ C with EM = ∅, and all697

J -structures R, if there is a very weak 0-embedding π : R →M then R ∈ C. a698

Lemma 3.10. Let M be a P-strategy premouse over a, of type ϕ. Let R be a J -structure699

for L0.700

(1 ) Suppose M is not type 3. Let π : R →M be a partial map such that either:701

(a) π is a weak 0-embedding, or702

(b) π is a very weak 0-embedding, and if ER 6= ∅ and M is not type 3 then item 4 of703

2.1 holds for ER.704

Then R is a PR-strategy premouse of type ϕ. Moreover, if PR = P and π�P = id705

and M is a Σ-premouse, where (Σ, dom(ΣM)) is suitably condensing, then R is also706

a Σ-premouse.707

26If M is a model all of whose proper segments are potential Σ-premice, and the rules for potential
P-strategy premice require that BM code a T -cofinal branch, but Σ(T ) is not defined, then M is not a
potential Σ-premouse, whatever its predicates are.
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(2 ) Suppose M is type 3. Let π : R → Msq be a very weak 0-embedding. (It follows708

that ER is an extender over R.) Let µ = crit(ER). If U = Ult(R|(µ+)R, ER) is709

wellfounded then R = Qsq for some type 3, PQ-strategy premouse of type ϕ. Moreover,710

let κ = crit(EM) and suppose that V = Ult(M|(κ+)M, EM) is wellfounded. Then U is711

wellfounded; let R = Qsq. Suppose further that V is a Σ-premouse, where (Σ, dom(ΣV))712

is suitably condensing. If PQ = P and π�P = id then Q is a Σ-premouse.713

(3 ) Suppose M is not type 3 and there is π : M → R such that either (a) π is Σ2-714

elementary or (b) π is cofinal and Σ1-elementary and BM = ∅.715

Then R is a PR-strategy premouse of type ϕ, and R is branch-whole iff M is branch-716

whole.717

(4 ) SupposeM is type 3 and there is π : Msq → R such that either (a) π is Σ2-elementary;718

or (b) π is cofinal and Σ1-elementary. Let µ = crit(ER) and suppose that Ult(R|(µ+)R, ER)719

is wellfounded.720

Then R = Qsq for some type 3, PQ-strategy premouse of type ϕ.721

(5 ) Suppose BM 6= ∅. Let T = T Mη where η < l(M) is largest such that M|η is branch-722

whole. Let b = bM and ωγ =
⋃
b. SoM E B(M|η, T , b). Suppose there is π :M→R723

such that π is cofinal and Σ1-elementary. Let ωγ′ = supπ“ωγ.724

(a) R is a PR-strategy premouse of type ϕ iff we have either (i) ωγ′ = lh(π(T )), or725

(ii) ωγ′ < lh(π(T )) and bR = [0, ωγ′]π(T ).726

(b) If either bM ∈M or π is continuous at lh(T ) then R is a PR-strategy premouse727

of type ϕ.728

Proof. We first consider (1), just proving (1)(b), focusing on the proof that R is a PR-729

strategy premouse of type ϕ. So let π : R →M be a very weak 0-embedding, as witnessed730

by X. Using 3.3, it is easy to see that for all η < l(R), R|η is a P ′-strategy premouse of type731

ϕ, and moreover, that π(η) < l(M), and R|η is branch-whole iff M|π(η) is branch-whole,732

and we may assume that T Rη ∈ dom(π), and π(T Rη ) = T Mπ(η). So we just need to see that733

the top predicates of R are valid. Clearly we may assume that EM = ∅. Because π is734

Σ1-elementary on an o(R)-cofinal set, π is also Σ1-elementary on an l(R)-cofinal set.735

SupposeR is a limit of branch-whole proper segments. Then letting η = supπ“l(R),M|η736

is a limit of branch-whole proper segments, and it follows that for all η′ > η, BM|η
′∩rg(π) = ∅.737

So BR = ∅, as desired.738

Now suppose that η < l(R) and R|η is the largest branch-whole proper segment of R.739

Let T = T Rη . If T = ∅ then argue like in the previous paragraph. Suppose T 6= ∅. Because740
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R|η is the largest branch-whole proper segment of R, we may assume that η ∈ X, and so741

M|π(η) is the largest branch-whole proper segment of M. So the validity of BR follows742

from 3.3.743

The “moreover” clause of (1) follows from the above argument and 3.3.744

For the proof of (2) argue like in the proof of 2.35. For (5)(b), in the case that ωγ′ <745

lh(π(T )), use the hypothesis that bM ∈ M to see that π“bM ⊆ [0, ωγ′]π(T ), and so bR =746

[0, ωγ′]π(T ). We omit further detail.747

Remark 3.11. The preceding proof left open the possibility that R fails to be a P-strategy748

premouse under certain circumstances (because BR should be coding a branch that has in749

fact already been coded at some proper segment of R, but codes some other branch instead).750

In the main circumstance we are interested in, this does not arise, for a couple of reasons.751

Suppose that Σ is an iteration strategy for P with hull condensation, M is a Σ-premouse,752

and Λ is a strategy for M. Suppose π : M → R is a degree 0 iteration embedding and753

BM 6= ∅ and π is discontinuous at lh(T ). Then we claim that bM ∈ M. (It’s not relevant754

whether π itself is via Λ.)755

To see this, note that the discontinuity implies that M �“There is E ∈ E which is a756

total measure and lh(T M) has cofinality κ = crit(E)”. Let C ∈M, C ⊆ lh(T ) be a club of757

ordertype κ. iE :M→ Ult0(M, E) is continuous at all points of C. Let λ = sup iE“lh(T ).758

Then iE“C = iE(C) ∩ λ is club in λ. But Ult0(M, E) �“λ < lh(iE(T )) and cof(λ) = κ759

is uncountable”. So [0, λ]iE(T ) ∩ iE“C is club in λ, and C ′ ∈ M where C ′ is (the club)760

C ∩ i−1
E “[0, λ]iE(T ). By hull condensation, Σ(T ) is the downward ≤T -closure of C ′.761

The other reason is that, supposing π : M → R is via Λ, then trivially, BR must762

code branches according to Σ. By part (a), we can obtain such a Λ given that we can realize763

iterates ofM back into a fixed Σ-premouse (with P-weak 0-embeddings as realization maps).764

Definition 3.12. Let P be transitive and Σ a partial iteration strategy for P . Let ϕ ∈ L0.765

Let F = FΣ,ϕ be the operator such that:766

1. F0(a) = J m
1 (a;P), for all transitive a such that P ∈ J1(â);767

2. Let M be a sound branch-whole Σ-premouse of type ϕ. Let λ = l(M) and with768

notation as in 3.5, let T = Tλ. If T = ∅ then F1(M) = J m
1 (M;P). If T 6= ∅ then769

F1(M) = B(M, T , b) where b = Σ(T ).770

We say that F is a strategy operator. a771

Clearly, with the notation above, if Σ is a strategy for P which is sufficiently total over772

an operator background B andM∈ B, thenM is an FΣ,ϕ-premouse iffM is a Σ-premouse773

of type ϕ.774
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Lemma 3.13. Let P be countable and transitive. Let ϕ be a formula of L0. Let Σ be a partial775

strategy for P. Let Dϕ be the class of iteration trees T on P such that for some J -modelM,776

with parameter P, we have T = T Mϕ . Suppose that (Σ, Dϕ) is suitably condensing. Then the777

class E of Σ-premice of type ϕ is very condensing; and FΣ,ϕ condenses finely.778

Proof. E is very condensing by 3.10. Clearly F = FΣ,ϕ is uniformly Σ1 and projecting. It779

follows that F condenses finely.780

Definition 3.14. Let a be transitive and let F be an operator (with parameter P). We781

say that MF ,#
1 (a) exists iff there is a (0, ω1 + 1)-F -iterable, non-1-small F -premouse over782

a (with parameter P). We write MF ,#
1 (a) for the least such sound structure. For Σ,P , a, ϕ783

as in 3.12, we write MΣ,ϕ,#
1 (a) for MFΣ,ϕ,#

1 (a).784

Let L+
0 be the language L0 ∪{≺̇, Σ̇}, where ≺̇ is the binary relation defined by “ȧ is self-785

wellordered, with ordering ≺ȧ, and ≺̇ is the canonical wellorder of the universe extending786

≺ȧ”, and Σ̇ is the partial function defined “Ṗ is a transitive structure and the universe is787

a potential Ṗ-strategy premouse over ȧ and Σ̇ is the associated partial putative iteration788

strategy for Ṗ”. Let ϕall(T ) be the L0-formula “T is the ≺̇-least limit length iteration tree789

U on Ṗ such that U is via Σ̇, but no proper extension of U is via Σ̇”. Then for Σ,P , a as in790

3.12, we write MΣ,#
1 (a) for MΣ,ϕall,#

1 (a).27
791

Let κ be a cardinal and suppose that M = MF ,#
1 (a) exists and is (0, κ+ + 1)-iterable.792

We write ΛM for the unique (0, κ+ + 1)-iteration strategy for M (given that κ is fixed). a793

Definition 3.15. We say that (F ,Σ, ϕ,D, a) is suitable iff a ∈ HC and a is transitive and794

MF ,#
1 (a) exists, where either795

(i) F is a projecting, uniformly Σ1 operator which condenses finely, CF is the (possibly796

swo’d) cone above a, D is the set of pairs (i,X) ∈ dom(F) such that either i = 0 or797

X is a sound whole F -premouse, and Σ = ϕ = 0, or798

(ii) P ,Σ, ϕ,Dϕ are as in 3.13, Y = Σ, F = FΣ,ϕ, Dϕ ⊆ D, D is a class of limit length799

iteration trees on P , via Σ, Σ(T ) is defined for all T ∈ D, (Σ, D) is suitably condensing800

and P ∈ J1(â).801

We write GF for the function with domain C, such that x 7→ Σ(x) in case (ii), and in case802

(i), GF(0, X) = F(0, X) and GF(1, X) = R↓aX for the least R E F1(X) such that either803

R = F1(X) or R↓aX is unsound. a804

Lemma 3.16. Let F be as in 3.15 and M =MF ,#
1 . Then ΛM has branch condensation and805

hull condensation.806

Proof. See 2.34 for related calculations.807

27We are only interested in the case that a is self-wellordered. Otherwise, note that MΣ,#
1 (a) =M#

1 (a).
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4 G-organized F-premice808

In this section we implement some ideas of Sargsyan within the framework of the previous809

sections, defining g-organized F-premice, assuming that F has the following absoluteness810

property. If F is a strategy operator for a nice enough iteration strategy, then the property811

does hold. In the following, δM denotes the Woodin cardinal of M.812

Definition 4.1. Let (F ,Σ, ϕ, C, a) be suitable. We say that (F ,Σ, ϕ, C, a) (or just F)813

determines itself on generic extensions iff, writing M = MF ,#
1 (a), there are formulas814

Φ,Ψ in L0 such that there is some γ > δM such that M|γ � Φ and for any non-dropping815

ΣM-iterate N of M, via a countable iteration tree T , any N -cardinal δ, any γ ∈ Ord such816

that N|γ � Φ & “δ is Woodin”, and any g which is set-generic over N|γ (with g ∈ V ), then817

(N|γ)[g] is closed under GF , and GF�(N|γ)[g] is defined over (N|γ)[g] by Ψ. We say such a818

pair (Φ,Ψ) generically determines (F ,Σ, ϕ, C, a) (or just F).819

We say an operator F is nice iff for some Σ, ϕ, C, a, (F ,Σ, ϕ, C, a) is suitable and deter-820

mines itself on generic extensions.821

Let P ∈ HC, let Σ be an iteration strategy for P and let C be the class of all limit length822

trees via Σ. We say that Σ determines itself on generic extensions iffMΣ,#
1 (P) exists,823

(Σ, C) is suitably condensing, and some (Φ,Ψ) generically determines (FΣ,ϕall
,Σ, ϕall, C,P).824

(Note then that the latter is suitable.) a825

Lemma 4.2. Let N , δ, etc, be as in 4.1, except that we allow T to have uncountable length,826

and allow g to be in a set-generic extension of V . Then (N|γ)[g] is closed under GF and827

letting G ′ be the interpretation of Ψ over (N|γ)[g], G ′�C = GF�(N|γ)[g].828

Proof. Suppose not. Let x ∈ (N|γ)[g] be a counterexample to the claimed agreement be-829

tween GF ,G ′. So x ∈ C ⊆ V . Let P be some forcing, and G ⊆ P be V -generic, such that830

g ∈ V [G]. Let ġ be a P-name for g. Let ẋ ∈ N|γ be such that ẋg = x. We may assume831

that P forces that ġ is Ň |γ̌-generic and ˇ̇xġ = x̌. Let α be large and let π : M 4 Vα with832

M countable and all relevant objects in rg(π). Write π(T̄ ) = T , etc. Then x̄ ∈ C and by833

3.16, T̄ is via ΣM. For any G∗ which is P̄-generic over M , letting g∗ = ¯̇gG
∗
, we then have834

x̄ ∈ N|γ[g∗], and letting G∗ be the interpretation of Ψ over N|γ[g∗], by 4.1 we have835

GF(x̄) = G∗(x̄) ∈ N|γ[g∗]. (4.1)

So x ∈ dom(G ′) (by the above, this is forced by P), and so G ′(x) 6= GF(x), by choice of x. By836

suitability, GF(x) is determined by its theory t over parameters in x̂, and G ′(x) is determined837

by its theory t′ in such parameters (the latter is forced). So let ϕ be some formula and z ∈ x̂<ω838
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such that ϕ(z) ∈ t but ¬ϕ(z) ∈ t′. Fixing a P-name ṫ′ for t′, we may assume that z, ṫ′ ∈ rg(π)839

and that P forces that ¬ϕ(ž) ∈ ṫ′. So with G∗, etc, as above, G∗(x̄) 6= GF(x). Therefore by840

line (4.1), GF(x) 6= GF(x̄). This easily implies that we are in case (i) of suitability. Suppose841

for example that x = (1, X) for some sound whole F -premouse X. Because F condenses842

finely, GF(x) E GF(x̄), and so by line (4.1), GF(x) / GF(x̄) = G∗(x̄). So over M , P̄ forces843

that GF(x)/G∗(x̄) and therefore that GF(x) is sound. Therefore GF(x) is sound and P forces844

that GF(x) /G ′(x). Therefore P forces that G ′(x)↓ax �“I have a proper segment R such that845

ϕF(R) and x ∈ R”. Reflecting this to M , G∗(x̄) 6= GF(x̄), contradiction.846

In the sequel, we need the notions of hod premice and hod pairs, and related definitions;847

see [6].28
848

Definition 4.3. A (hod) premouse P is reasonable iff P is super-small and satisfies the849

first-order consequences of (ω, ω1, ω1 + 1)-iterability.850

A hod pair (Σ, P ) is within scope iff Σ is fullness preserving (relative to some inductive-851

like, determined pointclass) and has branch condensation and hull condensation.29 a852

For a premouse P , an important consequence of reasonableness is condensation; for a853

hod premouse, condensation in intervals of the form [δ, γ), where P has no Woodins in (δ, γ).854

The following lemma, related to [7, §2], is due to Steel. However, the standard proof seems855

to have a gap (in the proof of Claim 4.6 below). A correct proof of what is essentially the856

lemma appeared in [12, §5], but that proof is somewhat buried in another context, so we give857

a proof here as service to the reader. We state the lemma only for pure L[E]-constructions858

and mice, but the relativization to LF [E]-constructions and F -mice is routine.859

Lemma 4.4 (Stationarity of L [E] constructions). Let γ be an uncountable cardinal. Let860

(P,Σ) and C = 〈Nα〉α≤γ be such that either (i) P is a k-sound premouse and Σ is a (k, γ+1)-861

strategy for P and C is a fully backgrounded L[E]-construction; or (ii) (P,Σ) is a hod pair,862

is within scope, Σ is a γ + 1-strategy, and C is a hod pair construction (cf. [6]). Suppose863

that P is reasonable and card(P ) < γ.864

Suppose that for each active Nα+1 = (Nα, E), there is an extender E∗ such that : (a)865

card(P ) < crit(E∗); (b) F �ν(E) ⊆ E∗; (c) if P is non-tame then iE∗(Σ)�Vη ⊆ Σ where η is866

the sup of all δ + 1 such that δ is Woodin in Nα.867

Then there is ξ ≤ γ + 1 such that:868

(1 ) for each α < ξ, we have Nα E P ′ for some Σ-iterate P ′ of P , and869

28See footnote 5.
29For hod pairs up to lsa-type, branch condensation implies hull condensation.
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(2 ) if ξ ≤ γ then there is a tree T via Σ, of successor length, Nξ = N T and bT does not870

drop in model.871

Proof. It suffices to prove that if (1) holds at ξ, but (2) does not, then (1) holds at ξ + 1.872

This is easy in all cases except when ξ = α+ 1 and Nα+1 = (Nα, E) for some E, so suppose873

this is the case. Let E∗ be a background extender for E and let j = iE∗ . Let T be the tree874

witnessing the lemma’s conclusion for α. We assume that T has minimal possible length.875

We must show that E is used in T . Let ν = ν(E) and κ = crit(E). The main point is the876

following claim:877

Claim 4.5. There is β < lh(j(T )) such that ν ≤ ν(ETβ ) and E�ν ⊆ ETβ .878

Proof. As in the proof that comparison of premice terminates, we have M
j(T )
κ = MT

κ and879

κ <j(T ) j(κ) and i
j(T )
κ,j(κ) exists and880

iTκ,j(κ)�M
T
κ = j�MT

κ . (4.2)

So let β + 1 <T j(κ) be such that predT (β + 1) = κ. We claim that β works. For let881

k : Ult(Nα, E)→ j(Nα)

be the factor embedding. Then crit(k) ≥ ν(E), and if E is type 2 then crit(k) ≥ lh(E).882

So Nα, MT
κ , MT

β and M
j(T )
j(κ) agree below (κ+)Nα . So ETβ measures all sets measured by E883

and by line (4.2) we have that E�ν ′ ⊆ ETβ �ν
′, where ν ′ = min(ν, ν(ETβ )). Now if (κ+)Nα <884

(κ+)M
T
κ then crit(k) = (κ+)Nα , so E is type 1 and ν = (κ+)Nα , so we are done. So assume885

(κ+)Nα = (κ+)M
T
κ , and assume ν ′ < ν. Since also (κ+)M

T
κ ≤ ν ′, the ISC applies to E�ν ′. So886

E�ν ′ ∈ Nα, although E�ν ′ /∈ j(Nα). So E is not type 2. So E is type 3, but then lh(ETβ ) < ν,887

contradicting the fact that Nα||ν = j(Nα)||ν.888

Claim 4.6. Either:889

– E is on E+(MT
β ), or890

– MT
β |ν(E) is active with extender F and E is on E+(Ult(MT

β |ν(E), F )).891

Proof. If (κ+)Nα = (κ+)M
T
β this is just by the ISC. So suppose (κ+)Nα < (κ+)M

T
β . Then E892

is type 1 and E is a submeasure of ETβ and M
j(T )
β ||ν(E) = Nα||ν(E). Thus, we can use [12,893

4.11, 4.12, 4.15] (because P is reasonable). The only thing to check here is that if M
j(T )
β |ν894

is active with a type 3 extender F then895

Ult(M
j(T )
β |ν, F )||lh(E) = Nα. (4.3)
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But this is true. For T �(κ+ 1) = j(T )�κ+ 1, and note that T uses no extenders with index896

in the interval (κ, ν), and j(T ) uses no extender with index in the interval (κ, (κ+)M
T
κ ). So897

MT
κ |ν = M

j(T )
β |ν is active, but since Nα|ν is passive, we have ETκ = F . But then T uses no898

extender with index in the interval (ν, lh(E)), and so line (4.3) is true.899

Now let λ be least such that lh(E
j(T )
λ ) ≥ lh(E), and let ξ be the largest limit ordinal900

such that ξ ≤ λ. By the following claim, we clearly have that j(T )�λ + 1 is via Σ, which901

completes the proof.902

Claim 4.7. j(T )�ξ + 1 = T �ξ + 1.903

Proof. We have Nα = N T and j(Nα) = N j(T ). Let χ be the largest cardinal of Nα. Then904

letting ε be the largest limit cardinal of j(Nα)||lh(E), we have ε ≤ χ and Nα||(ε+)Nα =905

j(Nα)||(ε+)Nα . (Though possibly (ε+)Nα < (ε+)j(Nα).) Also bNαc ⊆ j(Nα). These things906

follow from condensation, considering the factor embedding k. Now let δ = δ(j(T )�ξ); it907

follows that δ ≤ ε. So Nα|δ = j(Nα)|δ, and it suffices to see that for each ξ′ ≤ ξ, we have908

[0, ξ′]j(T ) = [0, ξ]T . We prove this by induction on ξ′. So assume T �ξ′ = j(T )�ξ′. We may909

assume ξ′ ≥ κ, so δ′ = δ(T �ξ′) ≥ κ also. Now if Nα �“δ′ is not Woodin” then let Q/MT
ξ′ be910

the Q-structure for δ′. Then Q/Nα, so Q/j(Nα), so Q/M
j(T )
ξ′ . Therefore [0, ξ′]T = [0, ξ′]j(T ),911

as required. So suppose Nα �“δ′ is Woodin”. Since κ ≤ δ′ < lh(E), and so by Claim 4.6, P912

is non-tame. So by our hypothesis, j(Σ)�Vδ′+1 ⊆ Σ. Therefore [0, ξ′]j(T ) = [0, ξ′]T again.913

The next lemma is similar to a result of Sargsyan (cf. [6, Lemma 3.35]).914

Lemma 4.8. Let (P,Σ) be such that P is a countable reasonable (hod) premouse and either915

(i) P is a premouse and Σ is the unique normal Ord-iteration strategy for P ; or (ii) (P,Σ) is916

a hod pair, within scope. Suppose that MΣ,#
1 (P ) exists. Then Σ determines itself on generic917

extensions.918

Proof. We describe a process by which N [g] can compute Σ�N [g] whenever N is a correct919

iterate of N = MΣ
1 (P ). The theorem will then be a straightforward corollary. Let N be920

such an iterate of N and let δ = δN . Let Λ be the iteration strategy for N .921

Consider case (a). Let C = 〈Nα〉α≤δ be the maximal L[E]-construction of N|δ, where922

background extenders are required to be in EN . Note that the hypotheses of 4.4 hold in N923

with respect to P, δ,Σ�N ,C.924

There is α < δ such that clause (ii) of 4.4 attains. For in N , δ is Woodin, and P925

is super-small, so we can apply the universality of Nδ (see [19, Lemma 11.1]). Note that926

α < κ where κ is the least strong of N . Fix a successor cardinal cutpoint θ of N such that927

α < θ < κ. Then via copying/resurrection, both Nα and P are iterable in V via lifting to928
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nowhere-dropping iteration trees on N based on N|θ. Let ΣP be the resulting strategy for929

P . By the uniqueness of Σ we have ΣP = Σ.930

In case (b), we proceed similarly, but form the hod pair construction C inside N , instead931

of the L[E]-construction. As in [6, 2.2.2] and with notation as there, we have α < δ and a932

tree T via Σ with last model R such that bT does not drop, R = Rα and Σα = ΣR,T . But933

by branch condensation and the uniqueness of choices of dropping branches, Σ has pullback934

consistency. So again letting ΣP be the pullback strategy, we have ΣP = Σ.935

So it suffices to see that Λ�X is sufficiently definable over N [g], where X is the class936

of trees T ∈ N [g] such that T is based on N|θ and is nowhere-dropping. Iterating N for937

N|θ-based trees just requires computing the correct Q-structures, which requires sufficient938

ordinals and knowledge of Σ. But we don’t yet know that Σ“N [g] ⊆ N [g]. We will compute939

the Q-structures indirectly, by such trees T to trees in N .940

Let P ∈ N be a partial order and let Ṫ ∈ N be a P-name such that P forces that Ṫ is941

a nowhere dropping, N|θ-based tree on N , of limit length, via the strategy to be described;942

it will follow that Ṫ g is a correct tree on N .943

Claim 4.9. Let g be P-generic over N . Let Q = Q(Ṫ g). Then Q ∈ N [g].944

In fact, let λ be the maximum of δ, (lh(Ṫ g)++)N [g], and (card(P)++)N . Then there is a945

short tree V ∈ N|λ, V on N , according to Λ, of successor length, such that for some α ≤946

o(N V), if G is Col(ω, λ) generic over N [g], then in N [g][G], there is a P-strategy-premouse947

Q which is a Q-structure for M(Ṫ g), and a Σ1-elementary embedding π : Q→ N V |α. So Q948

is unique with these properties and Q(Ṫ g) = Q ∈ N [g].949

Proof. Suppose not. Let p ∈ P force the failure. We may assume p = 1P. In N , we first form950

a Boolean valued comparison of M(Ṫ ) with N , forming a P-name for a tree U̇ on M(Ṫ ) and951

a tree V on N . Since N is a proper class Σ-premouse, it correctly computes Q-structures952

as far as they exist during this comparison. Suppose we have a limit stage (V , U̇)�λ of this953

comparison. If a condition q forces that U̇�λ is eventually only padding then below q, nothing954

need be done for U̇ at stage λ. Now suppose q forces otherwise. Suppose p ≤ q forces that955

here is a cofinal branch b of U̇ such that Q(M(V�λ)) EM U̇
b . Then below p, we set [0, λ]U̇ = b.956

If p ≤ q forces otherwise, then below p, we declare that U̇ is uncontinuable, and terminate957

the comparison. (In the latter case p forces that U̇ has limit length; we deal with this later.)958

For each stage α of the comparison, let lhα be the index of any extender (forced by some p959

to be) used at that stage. For limit λ, let M((V , U̇)�λ) be the lined up part of that stage, of960

height supα<λ lhα.961

Subclaim 4.10. We have:962

(a) V is based on N|θ;963
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(b) if α is such that [0, α]V does not drop and P forces that M U̇
α |θ′ = MV

α |θ′, where θ′ =964

iV0,α(θ), then the comparison terminates at stage α, and in fact, P forces that M U̇
α E965

MV
α |θ′;966

(c) at every limit stage λ, a Q-structure for M((V , U̇)�λ) exists;967

(d) the comparison terminates (i.e. there is α such that P forces that either U̇ is uncon-968

tinuable, or MV
α EM U̇

α , or M U̇
α EMV

α );969

(e) there is p ∈ P forcing that if U̇ has a final model, then N U̇ /N V .970

Proof. Part (b) implies (a) and (c). Suppose (b) fails. Let α be the least failure, and let971

p be a condition forcing this failure. Let g ⊆ P be generic with p ∈ g. Let T ′ be the tree972

on N which uses the same extenders as does T = Ṫ g, and let W0 = N T ′ . So W0 is proper973

class (as T was nowhere dropping). Let U ′ be the tree on W0 using the same extenders as974

Ug. Let W = MU ′
α . So θ′ < o(W ). We can compare (MV

α ,W ), producing trees (T1, T2). The975

comparison begins above θ′, a cardinal of MV
α . Suppose bU

′
drops. So ρω(W ) < θ′. Also976

then, bT1 drops, whereas bT2 does not, and T1, T2 have the same last model. But the last977

model Z of T1 has ρω(Z) ≥ θ′, contradiction. So bU
′
does not drop, and so neither do bT1 , bT2 ,978

and j = k where j = iV ̂ T1 and k = iT
′ ̂ U ′ ̂ T2 . But j(θ) = θ′ and k(θ) > θ′, contradiction.979

This gives (b).980

The usual proof that boolean-valued comparisons terminate gives (d).981

So if (e) fails, then bV drops, so N V is unsound, and P forces that N U̇ = N V . But then982

again the usual methods yield a contradiction.983

Now let p be as in part (e), and let g ⊆ P be N -generic, with p ∈ g. Let T = Ṫ g and984

U = U̇g. Let Q = Q(M(T )). Let W0,U ′ be as before, and let UQ be the 0-maximal tree on985

Q given by U (with the same extenders and branches).986

Suppose that U has a last model R. So we have R/N V and bU does not drop,and so neither987

do bU
′

or bUQ . Let π : N UQ → iU
′
(Q) be the factor map. Then π is a weak 0-embedding.988

So by 3.10, N UQ is a Σ-premouse. Also, iUQ : Q → N UQ is continuous at δ = δ(Ṫ g), and989

N UQ has no E-active levels above iUQ(δ) = ρω(N UQ). It follows that N UQ E N V . Also, iUQ990

is Σ1-elementary. So Q, V , N UQ and iUQ witness the truth of the claim, a contradiction.30
991

Suppose now that U̇g is uncontinuable, so has limit length. Let b = Λ(U̇g). It follows992

that b does not drop, and with U ′ as above, iU
′
(δ) = δ(U̇g). We have M(U) / N V , since993

30Ostensibly NUQ might be a strict segment of the Q-structure for NV |iUQ(δ), but this is not relevant. If
one chooses n < ω appropriately, and takes UQ to be n-maximal instead of 0-maximal, then one can arrange
that NUQ is the Q-structure.
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M(U) has no largest cardinal and is sound. Therefore iU
′
(Q) E N V , which again gives a994

contradiction.995

This completes the proof that N [g] computes Σ�N [g]. Now let Φ be the formula “There996

is no largest cardinal, there is a Woodin cardinal δ, P is absorbed by the L[E]-construction997

(or hod pair construction) at some stage < δ, and every partial order P forces that the998

process described above always succeeds”. Let Ψ be the formula defining Σ�N [g] through999

the above process. Note that if N ′ E N and N ′ � Φ and g is set generic over N ′, then1000

N ′[g] is indeed closed under Σ, and Σ�N ′[g] is defined over N ′[g] by Ψ. So (Φ,Ψ) generically1001

determines Σ, as required. (We don’t actually need that the Woodin of N ′ is a cardinal of1002

N .)1003

Remark 4.11. In the above lemma, we can replace the Ord-iterability of MΣ
1 by κ+ + 1-1004

iterability. In this case, byMΣ
1 , we meanM|κ+, whereM is the (κ+)th iterate ofMΣ,]

1 via1005

its top extender.1006

Notation 4.12. Let F be a nice operator (see 4.1) over B. Let M =MF ,]
1 and let ΛM be1007

the (0, o(B) + 1)-strategy for M. Let (Φ,Ψ) be a pair that generically determines F . These1008

objects are fixed for the remainder of this section.1009

In order to define g-organization, we need the following notion due to Sargsyan:1010

Definition 4.13 (Sargsyan, [6]). Let M be a transitive structure. Let Ġ be the name for the1011

generic G ⊆ Col(ω,M) and let ẋĠ be the canonical name for the real coding {(n,m) | G(n) ∈1012

G(m)}, where we identify G with
⋃
G. The tree TM for making M generically generic,1013

is the iteration tree T on M of maximal length such that:1014

1. T is via ΛM and is everywhere non-dropping.1015

2. T �o(M) + 1 is the tree given by linearly iterating the first total measure of M and its1016

images.1017

3. Suppose lh(T ) ≥ o(M) + 2 and let α + 1 ∈ (o(M), lh(T )). Let δ = δ(MT
α ) and let1018

B = B(MT
α ) be the extender algebra of MT

α at δ. Then ETα is the extender E with1019

least index in MT
α such that for some condition p ∈ Col(ω,M), p “There is a B-axiom1020

induced by E which fails for ẋĠ”.1021

Assuming that M is sufficiently iterable, then TM exists and has successor length. a1022

Definition 4.14. Given a successor length, nowhere dropping tree T on M, let PΦ(T ) be1023

the least P E N T such that for some cardinal δ′ of N T , we have δ′ < o(P ) and P � Φ+“δ′1024

is Woodin”. Let λ = λΦ(T ) be least such that PΦ(T ) E MT
λ . Then δ′ is a cardinal of MT

λ .1025

Let IΦ = IΦ(T ) be the set of limit ordinals ≤ λ. a1026
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Sargsyan is responsible for the main point of the following definition, the central notion1027

of this section (cf. [6, Definition 3.37]). He noticed that one can feed F into a structure N1028

indirectly, by feeding in the branches for TM, for variousM E N . The operator gF , defined1029

below, and used in building g-organized F -premice, uses this idea. We will also ensure that1030

being such a structure is first-order - other than wellfoundedness and the correctness of the1031

branches - by allowing sufficient spacing between these branches.1032

Definition 4.15 (gF). We define the forgetful operator gF , over B. Let b be a transitive1033

structure with M ∈ J1(b̂). 31 We define M = gF(b), a J -model over b, with parameter M,1034

as follows.1035

For each α ≤ l(M), EM|α = ∅.1036

Let α0 be the least α such that Jα(b) � ZF. Then M|α0 = J m
α0

(b;M).1037

Let T = TM|α0 . We use the notation PΦ = PΦ(T ), λ = λΦ(T ), etc, as in 4.14. The1038

predicates BM|γ for α0 < γ ≤ l(M) will be used to feed in branches for T �λ + 1, and1039

therefore PΦ itself, into M. Let 〈ξα〉α<ι enumerate IΦ ∪ {0}.1040

There is a closed, increasing sequence of ordinals 〈ηα〉α≤ι and an increasing sequence of1041

ordinals 〈γα〉α≤ι such that:1042

1. η1 = γ0 = η0 = α0.1043

2. For each α < ι, ηα ≤ γα ≤ ηα+1, and if α > 0 then γα < ηα+1.1044

3. γι = l(M), so M =M|γι.1045

4. Let α ∈ (0, ι). Then γα is the least ordinal of the form ηα + τ such that T �ξα ∈1046

Jτ (M|ηα) and if α > α0 then δ(T �ξα) < τ . (We explain below why such τ exists.)1047

And M|γα = J m
τ (M|ηα;M)↓b.1048

31G-organized premice identify M explicitly. For our intended application, i.e. the analysis of scales in

Lp
GF (R,F�HC), this is not of importance, because anyway,MF,#1 is analytical in F�HC. However, it seems

that one might want to consider a hierarchy of premice M over R, similar to Lp
gF (R), but in which M is

not identified explicitly. It seems we might have achieved this by, in some initial segment of M, feeding in
F(X) for enough sets X ∈ HODM, until M can be identified, as in the following sketch. Suppose we have
defined M|α; let F̃ = FM|α be the partial operator which is computed naturally from the fragment of F
already fed in toM|α. Working inM|α, let Q̃ be the function defined as follows. Let H be a transitive set.

Suppose there is γ ∈ Ord such that Q = J F̃γ (H) is defined (i.e., F̃ computes this), and Q is a Q-structure

for H. Then set Q̃(H) = Q. Otherwise Q̃(H) is undefined. Over M|α, consider the set MMα of countable

MF,#1 -like J -models N which are F̃-consistently Q̃-short tree iterable; we omit any precise definitions of
these notions. Then M ∈MM|α, and Q̃-guided trees on M will be via ΛM. OverM|β for β ≥ α, attempt to
compare all such N , and simultaneously iterate to make M|α generically generic. If at some stage the least
disagreement, between say N1 and N2, is due to the fact that say FN1(x) 6= FN2(x), then we can feed in
F(x) over some later M|γ. Then if Ni is an iterate of Mi, we will have {M1,M2} 6⊆MM|γ , and we start
over with γ replacing α. If we reach a Q̃-maximal stage of the comparison, which is in fact not maximal (for
M) then we can feed in the corresponding Q-structure. This process will eventually produce an iterate of
M over which R is generic, and therefore, over which F�HC and M are definable.
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5. Let α ∈ (0, ι). Then M|ηα+1 = B(M|γα, T �ξα,Λ(T �ξα))↓b.1049

6. Let α < ι be a limit. Then M|ηα is passive.1050

7. γι is the least ordinal of the form ηι+τ such that T �λ+1 ∈ Jηι+τ (M|ηι) and τ > o(MT
λ );1051

with this τ , M = J m
τ (M|ηι;M)↓b. a1052

Remark 4.16. We have PΦ / MT
λ ∈ M = gF(b). In fact, {PΦ} is ΣM1 , in L−0 , uniformly1053

in b. We leave the proof of this to the reader, but just note that this uses the fact that the1054

relevant part of the Col(ω,M|α0) forcing relation for gF(b) is sufficiently locally definable.1055

For given p ∈ Col(ω,M|α0), and α ≤ λ, and an extender E ∈ E(MT
α ) such that ν(E) is1056

inaccessible in MT
α , the question of whether p “E induces an extender algebra axiom not1057

satisfied by ẋĠ” is computed over M|(ηι + ν(E)). (Such an axiom has form1058 ∨
γ<crit(E)

ϕγ ⇐⇒
∨

γ<ν(E)

ϕγ,

where for each γ < ν(E), ϕγ ∈MT
α |ν(E), so the forcing relation below p regarding the truth1059

of ϕγ is computed somewhere below M|(ηι + ν(E)).)1060

Likewise, in item 4 of 4.15, τ exists. Also, for M̄ E M = gF(b), the sequences1061

〈M|ηα〉α≤ι ∩ M̄ and 〈M|γα〉α≤ι ∩ M̄ and 〈T �α〉α≤λ+1 ∩ M̄ are ΣM̄1 in L−0 , uniformly in1062

b and M̄.1063

To see that gF(b) is acceptable, it suffices to see that every initial segment of gF(b) is1064

sound. By the above remarks, there is a formula ϕ of L0, and a Σ1 formula ψ of L−0 , such1065

that gF(b) � ¬ψ, and for any J -structure N , N is an acceptable initial segment of gF(b)1066

iff N is a ΛM-premouse of type ϕ and N � ¬ψ. (Here ψ asserts that “some proper segment1067

has the form of gF(b)”.) But therefore if N is such, then N is sound, by 3.16 and 3.10 and1068

the proof that initial segments of L are sound.1069

Definition 4.17. Let b be transitive with M ∈ J1(b̂). A potential g-organized F-1070

premouse over b is a potential gF -premouse over b, with parameter M. a1071

Note that because we only feed in branches for non-maximal trees on M, the only non-1072

extender information being fed into a g-organized F -premouse can be computed by F -1073

construction. The following lemma is an easy corollary to 4.16.1074

Lemma 4.18. There is a formula ϕg in L0, such that for any transitive b with M ∈ J1(b̂),1075

and any J -structure M over b, M is a potential g-organized F-premouse over b iff M is a1076

potential ΛM-premouse over b, of type ϕg.1077
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Lemma 4.19. gF is basic and condenses finely. Moreover, the class of g-organized F-1078

premice is very condensing.1079

Proof. The “moreover” clause follows 3.13, and implies that gF condenses finely (since it is1080

clear that gF is projecting and uniformly Σ1).1081

Definition 4.20. Let M be a g-organized F -premouse over b. We say M is F-closed iff1082

M is a limit of gF -whole proper segments. a1083

As in [6], the main point of g-organization is the following. Because F determines itself1084

on generic extensions, F -closure ensures closure under GF :1085

Lemma 4.21. Let M be an F-closed g-organized F-premouse over b. Then M is closed1086

under GF . In fact, for any set generic extension M[g] of M, with g ∈ V , M[g] is closed1087

under GF and GF�M[g] is definable over M[g], via a formula in L−0 , uniformly in M, g.1088

Proof sketch. We show that M is closed under GF ; the generalization to generic extensions1089

of M and the definability of GF is similar.32
1090

Let z ∈ bMc; we want to see that GF(z) ∈ bMc. Let κ < l(M) be such that z ∈ M|κ1091

and M|κ is gF -whole. Let R = gF(M|κ), so R EM. Let α0 be the least α > κ such that1092

R|α � ZF−. Let PΦ = PΦ(TR|α0). Let P = Col(ω,R|α0). Let ẋ be the canonical P-name for1093

the P-generic real coding R|α0. Let ż be the canonical P-name for z. Now R �“P forces that1094

ẋ is extender algebra generic over PΦ”. Let t be the theory of GF(z), in parameters in ẑ<ω.1095

Then for all ~w ∈ ẑ<ω and formulas ϕ, ϕ(~w) ∈ t iff, letting ~̇w be the canonical P-name for ~w,1096

then in R, P forces that PΦ[ẋ] �“There is y such that Ψ(ż, y) and ϕ( ~̇w) is in the theory of1097

y”. This follows from 4.2.1098

The analysis of scales in Lp
gF(R) runs into a problem (see footnote 37). Therefore we1099

will analyze scales in a slightly different hierarchy.1100

Definition 4.22. Fix a natural coding of elements of HC by reals. Let X ⊆ HC. Given a1101

set X ⊆ HC, Xcd denotes the set of codes for elements of X in this coding. We say that X1102

is self-scaled iff there are scales on Xcd and R\Xcd which are analytical (i.e., Σ1
n for some1103

n < ω) in Xcd. a1104

Note that for any J -modelM such that HCM ∈M, the decoding function (for the above1105

codes), restricted to RM, is definable over HCM, so if X ⊆ HCM then (Xcd)M = Xcd ∩M.1106

32Without the assumption that g ∈ V , it seems that the domain of GF�M[g] might not be definable over
M[g].
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Definition 4.23. Let b be transitive with M ∈ J1(b̂).1107

Then GF(b) denotes the least N E gF(b) such that either N = gF(b) or J1(N ) �“Θ1108

does not exist”. (Therefore J m
1 (b;M) E GF(b).)1109

We say thatM is a potential Θ-g-organized F-premouse over X iff M ∈ HCM and1110

for some X ⊆ HCM, M is a potential GF -premouse over (HCM, X) with parameter M and1111

M �“X is self-scaled”. We write XM = X. a1112

In our application to core model induction, we will be most interested in the cases that1113

either X = ∅ or X = F�HCM. Clearly Θ-g-organized F -premousehood is not first order.1114

Certain aspects of the definition, however, are:1115

Definition 4.24. Let “I am a Θ-g-organized premouse over X” be the L0 formula ψ such1116

that for all J -structures M and X ∈ M we have M � ψ(X) iff (i) X ⊆ HCM; (ii) M is a1117

J -model over (HCM, X); (iii) M|1 �“X is self-scaled”; (iv) every proper segment of M is1118

sound; and (v) for every N EM:1119

– if N �“Θ exists” then N↓(N|ΘN ) is a PN -strategy premouse of type ϕg;1120

– if N �“Θ does not exist” then N is passive. a1121

Lemma 4.25. Let M be a J -structure and X ∈M. Then the following are equivalent: (i)1122

M is a Θ-g-organized F-premouse over X; (ii) M �“I am a Θ-g-organized premouse over1123

X” and PM = M and ΣM ⊆ ΛM; (iii) M|1 is a Θ-g-organized premouse over X and every1124

proper segment of M is sound and for every N EM,1125

– if N �“Θ exists” then N↓(N|ΘN ) is a g-organized F-premouse;1126

– if N �“Θ does not exist” then N is passive.1127

Lemma 4.26. GF is basic and condenses finely. Moreover, the class of Θ-g-organized F-1128

premice is very condensing.1129

Proof. We prove the “moreover” clause, using the equivalence of (i) and (iii) in 4.25. Let1130

π : R →M be a very weak 0-embedding whereM is a Θ-g-organized F -premouse. Because1131

of the elementarity of π with respect to ȧ, R|1 is a Θ-g-organized premouse. If R is active1132

then M is active, so M �“Θ exists” and (BM ∪ EM) ∩M|ΘM = ∅, so ΘM ∈ rg(π) and1133

π(ΘR) = ΘM. So if R �“Θ does not exist” then R is passive. If R �“Θ exists” then1134

M �“Θ exists” and π(ΘR) = ΘM, and letting X witness that π is a very weak 0-embedding,1135

we may assume that R|ΘR ∈ X. Therefore π : R′ →M′ is a very weak 0-embedding, where1136

R′ = R↓(R|ΘR) and M′ =M↓(M|ΘM). So by 4.19, R′ is a g-organized F -premouse.1137

Corollary 4.27. Let M be an n-sound Θ-g-organized F-premouse and let π : N → M be1138

a weak n-embedding. If M is n-maximally iterable then so is N .1139
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5 Local HODF analysis1140

Let F be a nice operator. Let M be a Θ-g-organized F -premouse.1141

Suppose M � “Θ exists”. Set θ = ΘM. Fix n0 < ω such that M is n0-sound and1142

ρn0(M) ≥ θ. Letting l(M) = γ0, we assume that for all 〈ξ, k〉 <lex 〈γ0, n0〉,M|ξ is countably1143

k-iterable. It’s clear that if a ∈M|ξ, then1144

Hull
M|ξ
k+1 (RM ∪ {a}) ∼= H1145

for some H ∈M|θ. The following, however, is less clear.1146

Lemma 5.1.

(bM|θc ,∈, ṠM|θ) ≺Σ1 (bMc ,∈, ṠM).

Moreover, for every a ∈M|θ and 〈ξ, n〉 <lex 〈γ0, n0〉, if θ ≤ ξ, then for some τ < θ,1147

Hull
M|ξ
n+1(RM ∪ {a}) ∼=M|τ .1148

Proof. Assuming the second clause, let us deduce the first. Let ϕ be in L−0 -Σ1 and a ∈M|θ.1149

Suppose M � ϕ(a). We must show that M|θ � ϕ(a). Let ξ < γ0 be least such that1150

M|(ξ + 1) � ϕ(a). Fix n < ω and an rΣn+1 formula ψ such that M|ξ � ψ(a), and for1151

any J -model N and a′ ∈ N , if N � ψ(a′) then J1(N ) � ϕ(a′). Let H be the transitive1152

collapse of Hull
M|ξ
n+1(RM∪{a}). Let π : H →M|ξ be the uncollapse. Then crit(π) < θ, since1153

ρ
M|ξ
n+1 6= R. Moreover, crit(π) = ΘH , and a ∈ H|ΘH , so J1(H) � ϕ(a). By the second clause,1154

H /M|θ, so we are done.1155

Now we prove the second clause. For each η < θ, let Hη be the transitive collapse of1156

Hull
M|ξ
n+1(RM ∪ η), and let πη : Hη → M|ξ be the uncollapse. For each η < θ, we have1157

Hη ∈M|θ and crit(πη) < θ, since ρ
M|ξ
n+1 6= RM. We say η is a generator iff η = crit(πη). Note1158

that the generators form a club in θ, and if η is a generator then η = ΘHη . Also let H ′η be1159

the least H /M|θ such that η ≤ o(H) and H projects to RM. Now Hull
M|ξ
n+1(R ∪ {a}) ∼= Hη1160

for some generator η. So part (a) of the following claim finishes the proof.1161

Claim 5.2. Let η < θ be a generator. Then:1162

(a) Hη /M|θ, and in fact, Hη E H ′η.1163

(b) If η is the least generator then ρ
Hη
n+1 = RM and p

Hη
n+1 = ∅.1164

(c) If ζ < η is the largest generator < η, then ρ
Hη
n+1 = RM and p

Hη
n+1 = {ζ}.1165

(d) If η is a limit of generators then ρ
Hη
n+1 = η and p

Hη
n+1 = ∅.1166

39



Proof. The proof is by induction on η.1167

Suppose η is the least generator. Then Hη = Hull
Hη
n+1(RM), which gives (b), and gives1168

that Hη is a fully sound Θ-g-organized F -premouse; clearly aHη = aM. So by countable1169

n-iterability and 4.27, Hη /M|θ, and Hη = H ′η since η = ΘHη .1170

Now suppose ζ is the largest generator < η. Then η ⊆ X = Hull
M|ξ
n+1(RM ∪ {ζ}), so1171

ρ
Hη
n+1 = RM and p

Hη
n+1 ≤ {ζ}. But H ′ζ ∈ X, so H ′ζ ⊆ X and Hζ ∈ X. Therefore p

Hη
n+1 = {ζ}1172

and Hη is (n + 1)-solid, and (n + 1)-sound, so fully sound. The rest is as in the previous1173

case; again we get H ′η = Hη.1174

Suppose η is a limit of generators. The rΣn+1 facts about Hη follow readily by induction.1175

Since ρ
Hη
n+1 = ΘHη and Hη is (n + 1)-sound, and Hη cannot have extenders overlapping η,1176

comparison gives Hη E H ′η, as required.1177

We say that M is relevant iff M �“Θ exists” and there is λ ∈ (ΘM, l(M)) such that1178

M|λ � ZF.1179

Suppose that M is relevant. Let TM denote the following L−0 theory:1180

TM = Th
M|θ
Σ1,L−0

(θ) = ThM
Σ1,L−0

(θ).

(The second equality is by 5.1.) Note then that M, U, U ′ are coded into TM, where U,U ′1181

are the trees of scales as in 4.22. (In fact, they are coded into TM ∩ γ<ω, for some γ such1182

that M|ξ is not relevant for any ξ ≤ γ.) More generally, we say that a set of ordinals A is1183

ODMF iff A ∈M and there is ξ < l(M) such that A is L0-definable from ordinal parameters1184

over M|ξ. By 5.1,1185

ODMF ∩ P(< θ) = J1(T̂M) ∩ P(< θ) = P(< θ) ∩
⋃
γ<θ

J1( ̂TM ∩ γ<ω).

We now define a g-organized F -premouse H over T M, by S-construction, as in [17]. Let

λ > θ be least such that M|λ � ZF−. For α ∈ [1, λ] let

Hθ+α = H|α = J m
α (TM;M).

Note M, U, U ′ ∈ H|1 and the Vopenka algebra P defined overM|θ as in [17] is in H|2. Also,1186

M|θ is GF -whole, so M|λ = J m
λ (M|θ;M)↓aM. For α ≥ 1 we will have l(Hθ+α) = α, and1187

so o(Hθ+α) = o(M|(θ + α)). For α ≥ λ we will have Hα = H|α, and so o(H|α) = o(M|α).1188

NowM↓(M|θ) is g-organized. Above H|λ, we do a level-by-level restriction of branches1189

and extenders fromM toH, setting, for α > λ, (i) BH|α = BM|α and (ii) EH|α = EM|α∩H|α.1190

Condition (i) will be reasonable because we maintain that for each α ≥ λ,M|α is a symmetric1191
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submodel of a generic extension of H|α (via P), and this will give that if H|α,M|α are whole1192

then the genericity iterations used to define gF(H|α) and gF(M|α) are identical.1193

The translation of fine structure between H andM is mostly as in [17], so we omit most1194

of the details. Here is a summary. For α ≥ 1 we define Hα(RM) as the L0-structure1195

Hα(RM) = (J TM,SHα

θ+α (HCM);EHα , BHα , SHα , (HCM, TM),M).

(This is not a J -model.) Truth in H(RM) can be reduced to truth in H via the forcing1196

relation for P. And H(RM) determines M: given that M|θ ∈ Hλ(RM), the extender1197

sequence of H determines that ofM above θ by the local definability of the forcing; because1198

M, U, U ′ ∈ H|1 and by induction applied to relevant initial segments of M|θ, we do indeed1199

have thatM|θ ∈ Hλ(RM). The local definability of the forcing is also used to show that the1200

reduction of M-truth to H-truth is local. The main theorem, which generalizes [17, 3.9], is1201

the following.1202

Lemma 5.3. We have:1203

(1 ) For ξ ≤ l(M) such that M|ξ is relevant, M||ξ is L−0 -Σ1 over HM|ξ(RM), and M|ξ is1204

L0-Σ1 over HM|ξ(RM), uniformly in ξ.1205

(2 ) H is an n0-sound g-organized F-premouse over TM.1206

(3 ) For all (β, k) ≤lex (l(M), n0) with λ ≤ β, we have ρk(H|β) = ρk(M|β), and pk(H|β) =1207

pk(M|β)\{θ}.1208

(4 ) For all β ∈ [θ, l(M)], M|β is GF-whole iff either β = θ, or β > λ and Hβ = H|β is1209

gF-whole.1210

Proof sketch. For most of the details, see the proof of [17, 3.9]. We just give enough of a1211

sketch to describe the new features.1212

As usual, (1) will follow from the proof, and by induction, we may assume that (1) holds1213

for ξ ≤ θ. This implies M|θ ∈ Hλ(RM), unless there is no relevant ξ < θ (a fact regarding1214

which TM informs us). In the latter case, M|θ = J m
θ (aM;M). But there is an L−0 -Σ11215

formula defining (U,M) over H1(RM) (by referring to TM), and H1(RM) �“X = p[U ]”,1216

where X = XM, which suffices.1217

We prove the remaining items by induction. We claim that for η ∈ [λ, l(M)], Hη is a1218

g-organized F -premouse over TM, and the models M|η,Hη are related. That is, (4) holds1219

for all β ≤ η; below any p ∈ P, Hη(RM) is a symmetric inner model of a P-forcing extension1220

of Hη; M|η is defined over Hη(RM) as described above; (3) holds for β ≤ η. Moreover,1221

everything is uniform in η. These facts are proved by induction on η.1222
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The fact that λ is least such that Hλ � ZF, and that the claim holds at η = λ, follows1223

the proof of [17, 3.9]. Suppose β < l(M), β ≥ θ, M|β is GF -whole, we have proved the1224

claim for η ≤ β, and (4) holds at β. Let N = gF(M|β) and I = gF(Hβ), and suppose that1225

(N↓aM) EM. We want to prove the claim for η ≤ l(N↓aM). This is done as for [17, 3.9],1226

except that we also need to see that1227

l(I) = l(N ) (5.1)

and that for each α < l(I),1228

BI|α = BN|α. (5.2)

So, clearly α = α′, where α (resp., α′) is the least > β such that Jα(M|β) � ZF (resp.,1229

Jα′(Hβ) � ZF), and that M|α,Hα are related. Let T = THα and U = TM|α. We now prove1230

by induction on γ that for all γ ≤ ε = max(λΦ(T ) + 1, λΦ(U) + 1) ,1231

T �γ = U�γ. (5.3)

Clearly then λΦ(T ) = λΦ(U); with an inspection of 4.15, lines (5.1) and (5.2) follow.1232

So suppose that line (5.3) holds at γ and γ < ε; we need to see that ETγ = EUγ . Suppose1233

γ < λΦ(T ). Let ẋHα be the canonical name for the Col(ω,Hα)-generic real coding Hα.1234

Let δ be least such that MU
γ ∈ M|δ, so then MT

γ = MU
γ ∈ Hδ, and by induction, M|δ1235

and Hδ are related. Let ẋM|α be likewise. Let p ∈ Col(ω,Hα) be such that p forces,1236

over33 Hδ, that ETγ induces an axiom which fails for ẋHα . Now Col(ω,M|α) factors as1237

Col(ω,Hα)×Col(ω,M|α). Let Ġ0, Ġ1 be the canonical names for the corresponding generics,1238

and let ẋ0,M|α and ẋ1,M|α be the corresponding generic reals codingHα andM|α respectively.1239

Then letting p′ ∈ Col(ω,M|α) force that p ∈ Ġ0, we have that p′ forces that ETγ induces1240

an axiom which fails for ẋ0,M|α. But using the natural definitions, ẋ0,M|α is arithmetic in1241

ẋM|α, and so it is easy to see that p′ forces that ETγ induces an axiom which fails for ẋM|α,1242

as required.1243

The converse is similar, but we need to use the fact that M|δ can be realized as a1244

symmetric submodel of a P-generic extension of Hδ. (It doesn’t suffice that this holds for1245

M|α and Hα, since the forcing relation which demonstrates the fact that EUγ induces a bad1246

axiom need not be in M|α.) We omit further detail.1247

The case that M↓(M|β) / N is handled mostly in the same manner, though in this1248

case it can be that line (5.3) fails for γ = λΦ(U) + 1, for example. We need to see that1249

l(H↓Hβ) < l(I), and that for each α < l(H↓Hβ), line (5.2) holds. But if γ < λΦ(T ) and1250

33This forcing is absolute, but the point is that the relevant forcing relation is in Hδ.
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MT
γ ∈ M, then γ < λΦ(U) and U�γ + 1 = T �γ + 1 and EUγ = ETγ ; and vice versa. This is1251

enough.1252

The next theorem relates the iterability of H and M. The proof of 5.4 uses 5.3 and is1253

just like that in [17, 3.18].1254

Theorem 5.4. Let M be an n0-sound Θ-g-organized F-premouse. Suppose M is relevant,

ρn0(M) ≥ ΘM and M|ξ is countably k-iterable for all 〈ξ, k〉 <lex 〈l(M), n0〉. Then

HM is countably n0-iterable ⇐⇒ M is countably n0-iterable above ΘM,

and for all γ ∈ Ord,

HM is (n0, γ)-iterable ⇐⇒ M is (n0, γ)-iterable above ΘM.

Remark 5.5. In the sequel, we will also need S-construction, performed mostly as above, for1255

example, in the following context. Let M be a g-organized F -premouse. Let η < l(M) be1256

such that M|η is a gF -whole strong cutpoint of M (see 6.22). Let g ⊆ Col(ω,M|η) be M-1257

generic. Then M[g] can be reorganized as a g-organized F -premouse M[g]∗ over (M|η, g).1258

Moreover, the fine structure and iterability of M[g]∗ corresponds to the fine structure and1259

iterability ofM above η, in a manner similar to 5.3 and 5.4. We leave the precise formulation1260

and proofs of these facts to the reader.1261

Using related arguments, we also get that M = Lp
gF(R) and N = Lp

GF(R) have the1262

same P(R). Moreover, if (F�HC)cd is self-scaled then P = Lp
GF(HC,F�HC) also has the1263

same P(R). LikewiseQ = LpF(R), if it is well-defined. In fact,M, N , P andQ have literally1264

the same extender sequences and for all α such thatM|α is active, there is a straightforward1265

translation between M|α, N|α, P|α and Q|α. (We use here that B-predicates in both the1266

gF and GF hierarchies code a branch b = ΛM(T ) computable from the Q-structure for M(T ),1267

which is a segment of LF(M(T )).)1268

6 Scales1269

Let F be a nice operator and let X ⊆ HC be self-scaled. We now give the scales analysis of1270

Lp
GF(R, X). In the context of our application to the core model induction, the analysis will1271

proceed from optimal determinacy hypotheses; such optimality is important in that context,1272

as explained in [20].34
1273

34Let Σ be the unique iteration strategy forM]
1. Suppose Lp

GΣ(R) � AD+ +MC. Then in fact Lp
GΣ(R)∩

P(R) = Lp(R) ∩ P(R). This is because in L(Lp
GΣ(R)), L(P(R)) � AD+ + Θ = θ0 + MC and hence by [4],
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WhenM is a J -model and we talk about, for example, ΣM1 , as a pointclass (forM), we1274

mean the collection of all subsets of RM which are L0-ΣM1 -definable over M.1275

6.1 Scales on ΣM1 sets for passive M1276

Theorem 6.1. Let M be a countably iterable passive Θ-g-organized F-premouse such that1277

M � AD. Then M �“ΣM1 has the scale property”.1278

Proof. For simplicity we assume that l(M) is a limit ordinal; for the contrary case make the1279

usual modifications using the S-hierarchy. We work with HC = HCM (possibly HC ( HCV ).1280

Let Φ ∈ L−0 be Σ1. For x ∈ R, let P (x)⇔M � Φ(x). We will show that there is a ΣM1 -scale1281

on P .1282

For x ∈ R and β < l(M) let P β(x) ⇔ M|β � Φ(x). Then P =
⋃
β<l(M) P

β. For each1283

β < l(M), we construct a closed game representation x 7→ Gβ
x for P β, such that Gβ

x is1284

continuously associated to x. Let1285

P β
k (x, u) ⇔ u is a position of length k from which player I has a winning

quasi-strategy in Gβ
x.

We will define Gβ
x in such a way that P β

k ∈ M and the map 〈β, k〉 7→ P β
k is ΣM1 . This will1286

give us the desired ΣM1 scale essentially by the argument in [18]. (If X 6= ∅ there will be1287

moves in Gβ
x which are sets of reals, coding ordinals, via a coding inM. This, however, does1288

not affect the construction described in [18] in any significant manner.)1289

Let X = XM. Then {(X,Xcd)} is ∆M1 . Let ~≤ = 〈≤n〉n<ω and ~≤′ = 〈≤′n〉n<ω be scales on1290

Xcd and R\Xcd as in 4.22. Let U and U ′ be the trees of these scales, respectively. Possibly1291

U,U ′ /∈M (becauseM might not have enough ordinals), but U,U ′ are “inM” in the codes1292

(given by the norms of the scales).1293

Fix β ∈ [1, l(M)) and x ∈ R. Before defining Gβ
x we give an outline. Player II will1294

play reals. Player I will (attempt to) build a countable, iterable, passive, Θ-g-organized1295

F -premouse P over X ∩ P , containing all reals played by player II, such that P � Φ(x),1296

but for all γ < l(P), P � ¬Φ(x). To enforce that player I indeed plays an iterable Θ-g-1297

organized F -premouse over X ∩ P , he must simultaneously build a very weak 0-embedding1298

π : P →M|γ for some γ ≤ β 35 and build branches through U and U ′ (in the codes).1299

in L(Lp
GΣ(R)), P(R) ⊆ Lp(R). Therefore, even though the hierarchies Lp(R) and Lp

GΣ(R) are different, as

far as sets of reals are concerned, we don’t lose any information by analyzing the scales pattern in Lp
GΣ(R)

instead of that in Lp(R).
35One could have instead used an approach more like that used in [17].
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We now proceed to the details. Player I will describe his model using the language1300

L∗ =def L0 ∪ {ẋi | i < ω} ∪ {Ẋ}.

The constant symbol ẋi will denote the ith real played in the game. Fix recursive maps

m,n : {σ | σ is an L∗-formula} → {2n | 1 ≤ n < ω}

which are one-to-one, have disjoint recursive ranges, and are such that whenever ẋi occurs1301

in σ, then i < min(m(σ), n(σ)).1302

Fix an L−0 -Σ1 formula σ0(v0, v1, v2) that defines over eachM|γ, the graph of a surjection1303

hγ : [o(M|γ)]<ω × R�M|γ.

Let T be the following L∗ theory:

(1) Extensionality

(2) “I am a J -model”

(3)i ẋi ∈ R

(4) Φ(ẋ0) ∧ ∀γ > 0
[
Ṡγ 2 Φ(ẋ0)

]
(5) ∀u, v, y, z [σ0(u, v, y) ∧ σ0(u, v, z)⇒ y = z]

(6)ϕ ∃vϕ(v)⇒ ∃v∃F ∈ Ord<ω
[
ϕ(v) ∧ σ0(F, ẋm(ϕ), v)

]
(7)ϕ ∃v [ϕ(v) ∧ v ∈ R]⇒ ϕ(ẋn(ϕ))

(8) ȧ = (HC, Ẋ)

For each n < ω, let en be the set of pairs (n,E) where E is a ≤n-equivalence class of1304

elements of Xcd. Let e =
⋃
n<ω en. Let W be the tree of the scale ~≤, in the codes given by1305

e. (In particular, W is a set of finite sequences σ, where for each i < lh(σ), σi ∈ ei.) Let1306

W ′ be defined likewise from ~≤′. For σ = ((a0, b0), . . . , (an−1, bn−1)) let p0[σ] = (a0, . . . , an−1)1307

and p1[σ] = (b0, . . . , bn−1).1308

A run of the game Gβ
x is of length ω. For each n, player I plays in, x2n, ηn,Λn where

in ∈ {0, 1}, x2n ∈ R, ηn < o(M|β) and Λn ∈ (W ∪W ′)n. Player II plays x2n+1 ∈ R. If

u = 〈(ik, x2k, ηk, x2k+1) | k < n〉 is a partial play of length n, we let

T ∗(u) = {(¬)iσ | σ is an L∗-sentence ∧ n(σ) < n ∧ i = in(σ)},
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where (¬)0σ = σ and (¬)1σ = ¬σ. If p is a full run of Gβ
x let

T ∗(p) =
⋃
n<ω

T ∗(p�n).

Let “ιvϕ(v)” stand for “the unique v such that ϕ(v)”.1309

We next describe the payoff conditions for player I. These are mostly analogous to those1310

in [17]. Conditions (f) and (g) ensure that for each i < ω, if player I asserts, for example,1311

that “ẋi ∈ Ẋcd” then 〈Λn,i〉n∈(i,ω) is an infinite branch through W witnessing that xi ∈ Xcd.1312

A full run p = 〈(ik, x2k, ηk,Λk, x2k+1) | k < ω〉 of Gβ
x is a win for player I iff1313

(a) T ∗(p) is a complete consistent extension of T ,1314

(b) x0 = x,1315

(c) for all i,m, n < ω, “ẋi(n) = m” ∈ T ∗(p) iff xi(n) = m,1316

(d) if ϕ and ψ are L∗-formulae with one free variable and1317

“ιvϕ(v) ∈ Ord & ιvψ(v) ∈ Ord” ∈ T ∗(p),

then “ιvϕ(v) ≤ ιvψ(v)”∈ T ∗(p) iff ηn(ϕ) ≤ ηn(ψ),1318

(e) if ψ, σ0, . . . , σn−1 are L∗-formulas with one free variable and1319

“ιvψ(v) ∈ Ord & Ṡιvψ(v) exists ” ∈ T ∗(p),

and for all k < n,1320

“ιvσk(v) ∈ o(Ṡιvψ(v))” ∈ T ∗(p)

then ηn(ψ) < β and for any L0-formula θ(v1, . . . , vn),1321

“Ṡιvψ(v) � θ[ιvσ0(v), . . . , ιvσn−1(v)]” ∈ T ∗(p)

if and only if1322

ṠMηn(ψ)
� θ[ηn(σ0), . . . , ηn(σn−1)],

(f) for all i < m ≤ n < ω, Λm,i E Λn,i and p0[Λn,i] = xi�n,1323

(g) for all i < m < ω, if “ẋi ∈ Ẋcd” ∈ T ∗(p) then Λm,i ∈ W , and otherwise Λm,i ∈ W ′.1324

In condition (e), we allow ηn(ψ) = 0 (where ṠN0 = aN for any J -structure N ). Because of1325

the payoff conditions, we could have added a sentence like “Ṗ is a premouse (of some kind)”1326
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to T (or any other sentences satisfied by all initial segments of M), without any significant1327

effect.1328

We next define the notion of honesty and show that the only winning strategy for player1329

I is to be honest. Note here that if M|γ � Φ(x), and γ is least such, then γ = α + 1, where1330

M|α projects to R, and therefore, since M is Θ-g-organized, M|γ is passive.1331

We say a position u = 〈(ik, x2k, ηk,Λk, x2k+1) | k < n〉 is (β, x)-honest iff M|β � Φ(x)1332

and letting γ = α + 1 ≤ β be the least such that M|γ � Φ(x), we have1333

(i) n > 0⇒ x0 = x,1334

(ii) letting Iu be the interpretation of L∗ in which ẋIui = xi for 0 < i < 2n and ẊIu = X,1335

all formulas in T ∗(u) are true of (M|γ, Iu), and1336

(iii) if σ0, . . . , σm−1 enumerate all L∗-formulae σ of one free variable such that n(σ) < n

and

(M|γ, Iu) � ιvσ(v) ∈ Ord,

and if for each k < m, δk < o(M|γ) is such that

(M|γ, Iu) � δk = ιvσk(v),

then, in V Col(ω,M|β), there is an order-preserving map1337

π : o(M|γ)→ o(M|β)

such that for each k < m, we have π(δk) = ηn(σk), and the partial embedding1338

π�o(M|α) :M|α→M|π(α)

is fully elementary, with respect to L0, on its domain,1339

(iv) for each i < m < n, Λm,i E Λn−1,i and xi�m = p0[Λm,i], and if xi ∈ Xcd then there is1340

f ∈ Wxi such that f�m = p1[Λm,i], and if xi /∈ Xcd then there is f ∈ W ′
xi

such that1341

f�m = p1[Λm,i].1342

Let Qβ
k(x, u) iff u is a (β, x)-honest position of length k.1343

The following two claims complete our proof of Theorem 6.1. Their proofs are similar to1344

those of [17, Claims 4.2, 4.3].1345

Claim 6.2. For all β, k we have Qβ
k ∈M, and the map (β, k) 7→ Qβ

k is ΣM1 .1346
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Proof Sketch. The truth of condition (iv) of honesty is easily computed.36
1347

Regarding the other conditions, the proof is basically like that of [17, Claim 4.2], except1348

that we modify some details and give a complete proof. Let γ = o(M|β), A = Th
M|β
1 (γ)1349

and A′ = γ ∪ {A}. Let λ ∈ Ord be least such that Jλ(A′) is admissible. The “embedding1350

game” G (see [17, Claim 4.2]) is definable from A and is fully analysed in Jα(A′) for some1351

α < λ. Now we claim that for each α < λ,1352

tα = Th
Jα(A′)
1 (A′) ∈M.

This suffices. For if N is any structure with A′ ⊆ N and satisfying “V = L[A′], I see a1353

full analysis of G but no proper segment of me does”, then N is wellfounded and so N =1354

Jα(A′) for some α (since otherwise the wellfounded part of N is admissible, contradicting1355

the minimality of N). Therefore M can identify the theory of the unique such N , allowing1356

the rest of the proof of [17, Claim 4.2] to go through.1357

So we show that tα ∈ M. Let ≤ be a prewellorder of RM of length ≥ γ, with ≤ in M.1358

Say that a structure N (possibly illfounded) is good iff N extends A′ and N �“V = L[A′]”1359

and N = HullN1 (A′) and ThN1 (A′) is (Σ˜1
1(≤))M (in the codes given by ≤). We claim that for1360

every α < λ, Jα(A′) is good (and therefore tα ∈ M). All requirements are clear other than1361

the fact that tα is (Σ˜1
1(≤))M.1362

Now if there is any illfounded good N , then the wellfounded part of N is admissible,1363

and therefore Jα(A′) / N for each α < λ, which easily gives the claim. So suppose all good1364

structures are wellfounded.1365

We claim that there is a largest good structure. For suppose not. Let S be the set of1366

all Σ1 theories of good structures. Clearly S ∈ M. Now for each N ∈ S let tN = ThN1 (A′).1367

Let t =
⋃
S. Then t ∈ M, and t = ThN1 (A′) for N = Jξ(A′), for some ordinal ξ. Moreover,1368

N = HullN1 (A′). But then by the coding lemma applied in M, N is good, contradiction.1369

So let N be the largest good structure. Let N = Jξ(A′) and N ′ = Jξ+1(A′). We1370

claim that N 41 N
′, and therefore that N is admissible, completing the proof. So suppose1371

otherwise. We claim that N ′ is good, for a contradiction. Clearly N ′ = HullN
′

1 (A′), so we1372

just need to see that t′ = ThN
′

1 (A′) is (Σ˜1
1(≤))M. By the coding lemma, it suffices to see1373

that t′ ∈ M. Now t′ is recursively equivalent to ⊕n<ωTn where Tn = ThNn (A′). But each1374

of these theories are in M since T1 = tN ∈ M. Therefore, by the coding lemma, each Tn1375

is (Σ˜1
1(≤))M. Let T be the set of parameters x ∈ R coding (relative to (Σ˜1

1(≤))M) one of1376

the theories Tn, for some n < ω. Then T ∈ M because in fact, T is (Σ˜1
10(≤))M. Therefore1377

36One does not need to consider the rank analysis of trees here, and there may not be enough ordinals in
M to do so. Instead, directly use the fact that W,W ′ are the trees of scales, which are analytical in (X, z),
to compute the truth of (iv), essentially inside M|1.
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⊕n<ωTn ∈M, as required.1378

Claim 6.3. For all β, k and all length k partial plays u in Gβ
x, player I has a winning1379

quasi-strategy starting from u iff u is (β, x)-honest. That is, P β
k (x, u)⇔ Qβ

k(x, u).1380

Proof Sketch. This is mostly like the proof of [17, Claim 4.3]. But consider the proof that1381

every strategic position u is (β, x)-honest; we adopt the notation from the proof of [17, Claim1382

4.3]. Certainly N is a J -model, and by payoff conditions (e)–(g), every proper segment of1383

N is fully sound and N is a J -model over (HCM, X) with parameter M. (The fact that1384

ṖN = M is by payoff condition (e), since Ṗ ∈ L0. The fact that ẊN = X is because player1385

I built witnessing branches through W,W ′.) Because1386

N � ∃y ∈ R
[
Φ(y) ∧ ∀γ > 0

[
Ṡγ 2 Φ(y)

]]
,

we have l(N ) = α+1 for some α ∈ Ord, and note thatM|π(α)+1 satisfies the same formula.1387

So M|π(α) and N project to R, so M|π(α) + 1 is passive (because M is Θ-g-organized).1388

But then because π�o(N|α) : N|α →M|π(α) is fully elementary on its domain, there is a1389

unique very weak 0-embedding π′ : N →M|π(α)+1 such that π′�α+1 = π�α+1. Therefore1390

by 4.26, N is a Θ-g-organized F -premouse. Now arguing as in the proof of [17, Claim 4.3],1391

using the results of §5, N|α (and so N ) is iterable, etc.1392

This completes our sketch of the proof.1393

6.2 Σ1 gaps1394

Definition 6.4. Let M be a J -model such that HCM ∈M|1.1395

We write N ≺1 M iff N E M and whenever ψ is an L−0 -Σ1 formula then for any1396

a1, ..., an ∈ RM,1397

M � ψ[a1, ..., an]⇒ N � ψ[a1, ..., an].

Let α ≤ β ≤ l(M). We call the interval [α, β] a Σ1-gap iff (i) M|α ≺1 M|β; (ii) for all1398

α′ ∈ [1, α), M|α′ 6≺1 M|α; (iii) for all β′ ∈ (β, l(M)], M|β 6≺1 M|β′; (iv) if β = l(M) then1399

M is fully sound and HCJ1(M) = HCM and M 6≺1 J m
1 (M;PM)↓aM. a1400

Definition 6.5. Let M be an n-sound Θ-g-organized F -premouse. Let n > 0 and b ∈1401

C0(M). The rΣn type realized by b over M, denoted rΣMn,b, is1402

{ϕ(v) ∈ L0 | ϕ is either rΣn or rΠn and C0(M) � ϕ[b]}.
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Let [α, β] be a Σ1-gap ofM. We say the gap is admissible iffM|α is admissible. We say1403

the gap is strong iff it is admissible and letting n < ω be the least such that ρn(M|β) = RM,1404

then every rΣn-type realized overM|β is realized overM|γ for some γ < β. We say the gap1405

is weak iff it is admissible but not strong. a1406

Inside a Σ1-gap there are no new scales. The proof of the following theorems are routine1407

generalizations of the corresponding proofs in [18].1408

Theorem 6.6 (Kechris-Solovay). LetM be a Θ-g-organized F-premouse which is countably1409

0-iterable. Suppose [α, β] is a Σ1-gap of M and M|α � AD. Then:1410

1. There is a Π
M|α
1 relation on RM with no uniformizing function f ∈M|β.1411

2. For α ≤ γ < β and all n ∈ [1, ω), M �“The pointclasses rΣ˜M|γn and rΠ˜M|γn do not1412

have the scale property.”1413

A relation witnesing item 1 of Theorem 6.6 is (RM)2\CM|α where CM|α(x, y) iff x, y ∈ RM1414

and there is γ < α such that y is L0-definable overM|γ from parameters in Ord∪{x}. The1415

same relation witnesses that there is no new scale definable over the end of a strong gap.1416

Theorem 6.7 (Martin). Let M be a Θ-g-organized F-premouse such that M is countably1417

0-iterable. SupposeM � AD. Let [α, β] be a strong Σ1-gap ofM such that β < l(M). Then:1418

1. There is a Π
M|α
1 relation on RM which has no uniformization definable over M|β.1419

2. For all n < ω,M �“The pointclasses rΣ˜M|βn and rΠ˜M|βn do not have the scale property”.1420

Remark 6.8. The only case remaining in the analysis of scales in Lp
GF(R, X) is at the end of1421

a weak gap. For letM be a Θ-g-organized F -premouse and let [α, β] be a gap ofM. If [α, β]1422

is inadmissible then α = β andM|α �“Θ does not exist”, and thereforeM|α is passive. So1423

6.1, combined with the argument in [18], suffices to cover all pointclasses in J1(M|α) (given1424

determinacy there). This is the main reason that we analyze scales in Lp
GF(R, X) instead1425

of in Lp
gF(R, X). The analysis of scales in the latter runs into difficulties in the preceding1426

case.37 So we are left with strong and weak gaps, and strong gaps are dealt with as usual.1427

We deal with weak gaps in three cases, as described in the introduction.1428

37Let M be a g-organized F-premouse over HCM. Suppose α = l(M) and [α, α] is an inadmissible gap
of M, and BM 6= ∅. We would like to prove that ΣM1 , or at least Σ˜M1 , has the scale property. One might
try to mimic the proof of 6.1; but we need to have player I build a B-active structure N . Aiming for the
scale property for Σ˜M1 , one can ensure that player I builds a g-organized F-premouse N , and in the proof
that every strategic position is honest, can arrange that the resulting generic run produces a structure N
such that N EM. But this does not give that BN = BM ∩N , and the latter is needed to verify honesty.
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6.3 Scales at the end of a weak gap from strong determinacy1429

The first scale construction for weak gaps proceeds from a strong determinacy assumption.1430

It is most useful for weak gaps [α, β] of Lp
GF(R, X) where F�HC /∈ Lp

GF(R, X)|α.1431

Theorem 6.9. Let R be a Θ-g-organized F-mouse. Suppose R � AD and [α, β] is a weak1432

gap in R with β < l(R). Let n < ω be least such that ρn(R|β) = RR. Then R � “rΣ˜R|βn has1433

the scale property”.1434

Proof Sketch. Since the proof is almost the same as that of [17, Theorem 4.16], we only1435

sketch it here. However, our approach is a little different from that used in [17].38 For1436

simplicity, we assume that XR = ∅ and n = 1 and β is a limit ordinal. (If XR 6= ∅ make1437

changes as in the proof of 6.1.) Let M = R|β.1438

Let p = pM1 and let w1 ∈ RM be such that the solidity witness(es) W for p is in1439

HullM1 (p, w1) and such that Σ = Σ1,M
〈p,w1〉 is a non-reflecting type.1440

We now define a sequence 〈βi, Yi, ψi〉i<ω. There are two cases to consider. We write Mo
γ1441

for M o (γ, 0)39.1442

Case 6.10. M is either E-passive or E-active type 3.1443

Let β0 be the least γ < β such that1444

max(p) < o(Mo
γ). (6.1)

Now suppose βi < β is defined. Then we define Yi, ψi and βi+1 as follows:1445

Yi = Hull
Moβi
ω (RM ∪ {p}), (6.2)

1446

ψi = least ψ ∈ Σ such that Mo
βi
� ¬ψ[〈p, w1〉], (6.3)

1447

βi+1 = least γ such that Mo
γ � ψi[〈p, w1〉]. (6.4)

Case 6.11. M is E-active type 1 or 2.1448

We make the following changes to the construction from the previous case. Let E = EM1449

and κ = crit(E).1450

Let β0 be the least γ such that ν(EM) < o(Mo
γ) and line (6.1) holds. Given βi, we define1451

Yi by line (6.2), then let1452

ξi = sup(Yi ∩ (κ+)M),

38This is because the proof of [17, Claim 4.18] is incomplete (at least, the authors do not see why, in the
notation of that proof, N = M, because it is not clear that N is sound). Our approach gets around this
problem, and also simplifies the proof, because it eliminates the need for the “bounding integers” mk and
nk played by player I in the game Gix of [17].

39In [17], this is denoted M||γ.
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define ψi by line (6.3), and then let40
1453

βi+1 = least γ such that Mo
γ � ψi[〈p, w1〉] and E ∩Mo

γ measures all sets in M|ξi.

Claim 6.12.
⋃
i<ω Yi =M. In particular, the βi’s are cofinal in β.1454

Proof. Let N be the transitive collapse of
⋃
i<ω Yi and let π : N →

⋃
i<ω Yi be the uncollapse1455

map. Let βω = supi<ω βi. Note that Mo
βω
� Σ and so HullM1 (〈p, w1〉) ⊆ rg(π). Therefore1456

W,βi ∈ rg(π). In fact, βi ∈ Yj for i < j.41 So ThM1 ({β0, β1, . . .}) is recorded in Σ. So letting1457

π(β∗i ) = βi, we have that π is Σ1-elementary on {β∗i | i < ω}, which is cofinal in o(N ). So1458

π is a weak 0-embedding. Clearly N is a J -structure. So by 4.26, N is a Θ-g-organized1459

F -premouse, and clearly HCN = HCM.1460

Let π(p∗) = p. It is easy to see that N = HullN1 (RN ∪{p∗}). But p∗ is 1-solid for N since1461

W ∈ rg(π) (so π−1(W ) is a generalized solidity witness for p∗).42 Therefore N is 1-sound and1462

p∗ = pN1 . Since trees on N can be lifted to trees onM via π, N is countably 0-GF -iterable.1463

Since N is also minimal realizing Σ, therefore N =M.1464

The fact that π = id now follows as usual, using the fact that p∗ = p.1465

Using notation mostly as in [17] (i.e., the proof of [17, Theorem 4.16]), we proceed to

define the game Gi
x as there, making some modifications. Player I describes his model using

the language L = L0∪{ẋi, β̇i,Ṁi}i<ω∪{Ġ, ṗ, Ẇ}; each of the symbols in L\L0 are constants.

Let B0 be defined from L as in [17]. Let S0 be the set of sentences in B0 which involve no

constants of the form ẋi for i /∈ {1, 2} and are true in C0(M) when (ẋ1, ẋ2, Ġ, ṗ, Ẇ , β̇k,Ṁk)

are interpreted as (w1, w2, p, p,W, βk,Mo
βk

). A run of Gi
x has the form

I T0, s0, η0 T1, s1, η1 · · ·

II s1 s3 · · ·

where Ti, si are as in [17] and ηi ∈ o(M) . The winning conditions for player I are, verbatim,1466

the winning conditions (1)–(6) as stated in [17].43
1467

We define the term x-honest exactly as in [17] except that we drop condition (iv) from1468

there. The rest of the proof is mostly a routine adaptation of the proof in [17]; we just1469

mention the main changes.1470

40Recall that E is the M-amenable predicate coding the active extender of M.
41So it would not have made any difference to add the parameters β0, . . . , βi−1 to the hull defining Yi.
42Generalized solidity witness is defined in [8]. Since π is only a weak 0-embedding, we do not yet know

that π−1(W ) is the (standard) solidity witness.
43We have no need for the integer moves mk, nor any version of condition (8) used in [17].
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Claim 6.13. For any position u of Gi
x, player I wins Gi

x from u if and only if u is x-honest.1471

Proof sketch. Consider the proof that every strategic position is honest. We use notation1472

mostly as in the proof of [17, Claim 4.19], with a couple of changes. Let N be the reduct1473

of A to an L0-structure. Let Nk be (the L0-structure) ṀA
k . So, because A � S0, Nk = N oβ∗k1474

and N is the “union” of the Nk. Let p∗ = ṗA = G∗. As in the proof of [17, Claim 4.19] we1475

get that N is a countably iterable Θ-g-organized F -premouse which is minimal for realizing1476

Σ. Clearly XN = ∅ = XM. Also, N is sound with ρN1 = RN and pN1 = p∗. For let1477

H = HullN1 (RN ∪ p∗). Then because A � S0, we have Nk ∈ H for each k < ω; it follows1478

that H = bNc. And W ∗ is a generalized solidity witness for p∗, because this is enforced by1479

formulas in S0 regarding Ẇ and ṗ. So N = M and p∗ = p. Because A satisfies S0, this1480

implies that W ∗ = W , β∗k = βk and Nk =Mo
βk

for all k < ω. This completes our sketch.1481

Claim 6.14. Let k < ω. Then {u | u is an x-honest position of Gi
x of length k} ∈ M.1482

Proof sketch. The proof is the same as that of [17, Claim 4.20] (except that condition (iv)1483

of [17] is not involved, so the use of the Coding Lemma regarding this condition is avoided).1484

In the computation of the definability of (v) we still use the Coding Lemma; it is here that1485

we use our assumption that J1(M) � AD (beyond that M � AD).1486

The remaining details are as in [17]. This completes the proof of Theorem 6.9.1487

6.4 Scales at the end of a weak gap from optimal determinacy1488

As described in [20], typically in the core model induction, one does not have the stronger1489

determinacy hypothesis required to apply 6.9. So we need generalizations of [17, Theorem1490

4.17] and [20, Theorem 0.1], which are the second and third cases of our scale constructions1491

for weak gaps, respectively.1492

Definition 6.15. Let M be a Θ-g-organized F -premouse.1493

We say thatM is mandatory iff eitherM is active or there is some E ∈ EM such that1494

E is total over M.1495

We say that M is self-analysed iff for every mandatory N EM there is P EM such1496

that N / P and P is admissible.1497

We say thatM is self-coded iffM is not self-analysed but for every mandatory N EM1498

there is P /M such that N E P and ρPω = RM. a1499

Note that if M �“Θ does not exist” or M has no active segment above ΘM then M is1500

either self-analysed or self-coded.1501
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Theorem 6.16. Let M be a sound Θ-g-organized F-mouse such that M � AD and M is1502

either self-analysed or self-coded. Suppose thatM ends a weak gap ofM. Let n < ω be least1503

such that ρMn = RM. Then M �“rΣ˜Mn has the scale property”.1504

Proof Sketch. The proof is similar to that of 6.9, but we use the fact that M is either self-1505

analysed or self-coded to reduce the reliance on determinacy.44 Note that M is passive.1506

Suppose for simplicity that XM = ∅, β is a limit ordinal and n = 1.1507

We define most things, including Yk and Bk, as in the proof of 6.9. Fix x ∈ R and i < ω;1508

we want to define the game Gi
x. Let m : B0 × B0 → ω and n : B0 → ω be recursive and1509

injective with disjoint ranges, and such that for all ϕ, ψ ∈ B0, ϕ, ψ have support m(ϕ, ψ)1510

and ϕ has support n(ϕ) and if ϕ 6= ψ then m(ϕ, ϕ) < m(ϕ, ψ). A run of Gi
x consists of the1511

same types of objects as in the proof of 6.9, except that we also require that ηk ∈ Yk. The1512

rules of Gi
x are (1)–(5) as stated in [17], along with rule (6) below, which requires player I1513

to play a wellfounded model, and rule (7) below, which requires player I to build, for each1514

mandatory initial segment P of his model, a partial embedding P → R for some R EM,1515

which is elementary on ordinal parameters (but these embeddings need not agree with one1516

another):1517

(6) if ϕ, ψ ∈ B0 each have one free variable and1518

“ιvϕ(v) ∈ Ord & ιvψ(v) ∈ Ord” ∈ T ∗,

then “ιvϕ(v) ≤ ιvψ(v)”∈ T ∗ iff ηn(ϕ) ≤ ηn(ψ),1519

(7) if ψ, σ0, . . . , σj−1 ∈ B0 each have one free variable and k < ω and1520

“ιvψ(v) < l(Ṁk) & Ṁk|(ιvψ(v)) is mandatory” ∈ T ∗

and for all i < j,1521

“ιvσi(v) ∈ o(Ṁk|(ιvψ(v)))” ∈ T ∗

then ηm(ψ,ψ) < l(Mk) and for any L0-formula θ(v1, . . . , vn),1522

“Ṁk|(ιvψ(v)) � θ[ιvσ0(v), . . . , ιvσj−1(v)]” ∈ T ∗

if and only if1523

M|ηm(ψ,ψ) � θ[ηm(ψ,σ0), . . . , ηm(ψ,σj−1)].

44Of course determinacy is still required in the, supressed, norm propagation part of the argument.
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We leave to the reader most of the remaining details, including the precise formulation1524

of x-honesty (of a position in Gi
x). The analysis of commitments made pertaining to rule1525

(6) are dealt with as in [18]. Consider rule (7). If M is self-analysed then the analogue of1526

condition (v) of x-honest from [17] can be computed in some admissible proper segment of1527

M (we don’t need the Coding Lemma for this). If M is not self-analysed but is self-coded1528

then there is γ < β such that ρω(M|γ) = RM and every mandatory initial segment P ofM1529

is such that P EM|γ. One can therefore use the Coding Lemma as in the proof of Claim1530

6.2 to compute the analogue of condition (v) over M|γ.1531

If n > 1 then we do not require the Coding Lemma for computing honesty. For in this1532

case there are arbitrarily large P /M such that P is admissible, and so M is self-analysed,1533

and there will be cofinally many admissible P ∈ Yk such that P /M.1534

This completes our sketch.1535

We now proceed to the generalization of [20, Theorem 0.1], the final scale construction1536

of the paper. While it uses only the weaker determinacy assumption, it requires a mouse1537

capturing hypothesis, as in [20].1538

Remark 6.17. Suppose V is a J -model and HC exists. Let Γ be a pointclass of the form1539

Σ
V |α
1 for some α < l(V ). Recall that (in this setting) for x ∈ R, CΓ(x) denotes the set of all1540

y ∈ R such that for some ordinal γ < ω1, x (as a subset of ω) is ∆Γ({γ}).1541

Let x ∈ HC be such that x is transitive and f : ω → x a surjection. Then cf ∈ R denotes1542

the code for (x,∈) determined by f . And CΓ(x) denotes the set of all y ∈ HC ∩ P(x) such1543

that for all surjections f : ω → x we have f−1(y) ∈ CΓ(cf ).1544

Lemma 6.18. Let P be a Θ-g-organized F-premouse satisfying AD and let Q / P be such1545

that Q is passive and admissible. Let Γ be the pointclass ΣQ1 . Let x ∈ HCP with x transitive1546

and infinite. Then working in P, for all y ∈ HC, the following are equivalent:1547

(1 ) y ∈ CΓ(x),1548

(2 ) there is R /Q such that y is definable over R from parameters in Ord ∪ x ∪ {x},1549

(3 ) for comeager many bijections f : ω → x, f−1(y) ∈ CΓ(cf ).1550

Proof. The proof is mostly like that of [13, Theorem 3.4]; we just mention a couple of points.1551

For x ∈ R, the equivalence of (1) and (2) follows because Q � AD + KP. Now consider the1552

proof that (3) implies (2). If P satisfies (3), then we may take the witnessing comeager set1553

C to be a countable intersection of dense sets, and then C ∈ Q. So by KP there is R / Q1554

such that for every f ∈ C, f−1(y) is definable over R from parameters in Ord ∪ {cf}. As in1555

[13], there is then some α < ωP1 and n < ω and injection σ : n → x such that for comeager1556
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many bijections f : ω → x extending σ, f−1(y) is the αth real which is definable over R1557

from parameters in Ord∪{cf}, in the natural ordering. Letting δ = l(R), this defines y over1558

Q|(δ + 2) from parameters in {δ, x} ∪ rg(σ).1559

Definition 6.19. Let P be a Θ-g-organized F -premouse satisfying AD. Let Q/P be passive1560

and admissible and let Γ be the pointclass ΣQ1 . Suppose that F∗ = F�HCP ∈ Q.1561

Now work in P . Let x ∈ HC be transitive. Then LpΓ,gF∗(x) denotes (Lp
gF∗(x))Q. (So1562

the relevant iteration strategies must be inside Q.)1563

Still inside P , we say that super-small gF∗-mouse capturing for Γ holds on a1564

cone iff there is z ∈ R such that for all transitive x ∈ HC with z ∈ J1(x̂), we have1565

CΓ(x) = LpΓ,gF∗(x) ∩ P(x) and LpΓ,gF∗(x) is super-small. a1566

Theorem 6.20. Let M be a Θ-g-organized F-mouse such that M � AD. Let [α, β] be a1567

weak gap of M. Suppose there is a transitive rud-closed set MDC such that M|β ∈ MDC1568

and RM = RMDC and MDC � DCR.45 Let Γ be the pointclass Σ
M|α
1 . Suppose that F∗ =1569

F�HCM ∈ M|α and that M �“super-small gF∗-mouse capturing for Γ holds on a cone”.1570

Let n < ω be least such that ρn(M|β) = RM. Then M �“rΣ˜M|βn has the scale property”.1571

Remark 6.21. Recall that if β = l(M) then by 6.4 we are assuming that M is sound. If1572

RM = R and DCR holds then V suffices as MDC.1573

Proof. We follow the proof of [20], making some modifications. By 6.16 we may assume that1574

M �“Θ exists” and there is some ξ + 1 ∈ (ΘM, l(M)) such that M|ξ � ZF. Therefore1575

P(R) ∩M ⊆ M|ξ and M|ξ � ZF + AD. We work mostly inside M or MDC, and so with1576

R = RM. We write Lp
gF(x) for (Lp

gF∗(x))M, and likewise for restrictions like Lp
gF ,Γ(x).1577

(We will not be interested in (Lp
gF(x))V if it disagrees with (Lp

gF∗(x))M.) Let z0 ∈ R be a1578

base for the mouse capturing cone. Let us assume for notational simplicity that z0 = ∅; the1579

relativization above a non-trivial z0 is immediate.46
1580

Remark 6.22. For the rest of the proof, except where mentioned otherwise, premouse1581

abbreviates g-organized F-premouse, and likewise all related terminology (such as iteration1582

tree, Lp, etc).1583

Let P be a J -model and η ≤ o(P). Recall that η is a cutpoint of P iff whenever E ∈ EP+1584

and crit(E) < η, we have lh(E) ≤ η. And η is a strong cutpoint of P iff whenever E ∈ EP+1585

and crit(E) ≤ η, we have lh(E) ≤ η. We will also say that P|η is a (strong) cutpoint iff1586

45MDC provides a universe in which we can execute certain arguments in the proof of [20, Theorem 0.1]
without introducing new reals. The authors believe that [20, Theorem 0.1] should also have adopted a
hypothesis along these lines.

46In fact, in the typical setting, if M is far enough past MF (for example, if M has any extender on its
sequence) then z0 = ∅ does suffice.
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o(P|η) is a (strong) cutpoint (which is iff η is a (strong) cutpoint). Recall also that P is1587

η-sound iff for every n < ω, if η < ρPn then P is n-sound, and if ρPn+1 ≤ η then letting1588

p = pPn+1, p\η is (n+ 1)-solid for P , and P = HullPn+1(η ∪ p).1589

Definition 6.23. Let t ∈ HC with M ∈ J1(t̂). Let 1 ≤ k ≤ ω. A premouse N over t is1590

k-suitable iff there is a strictly increasing sequence 〈δi〉i<k such that1591

(a) ∀δ ∈ N , N �“δ is Woodin” if and only if ∃i < k(δ = δi).1592

(b) If k = ω then o(N ) = supi<ω δi, and if k < ω then o(N ) = supi<ω(δ+i
k−1)N .1593

(c) If N|η is a gF -whole strong cutpoint of N then N|(η+)N = LpΓ(N|η).47
1594

(d) Let ξ < o(N ), where N �“ξ is not Woodin”. Then CΓ(N|ξ) �“ξ is not Woodin”. 48
1595

We write δNi = δi; also let δN−1 = 0 and δNk = o(N ). a1596

In the context of k-suitability, we omit the phrase “over t”, but all relevant premice will1597

implicitly be over t for some fixed t.1598

It is an easy consequence of (c) that if N|η is any strong cutpoint of N then N|(η+)N =1599

LpΓ
+(N|η) (just apply (c) to the largest gF -whole segment of N|η).1600

Let N be k-suitable and let ξ ∈ o(N ) be a limit ordinal, such that N �“ξ isn’t Woodin”.1601

Let Q / N be the Q-structure for ξ. Let α be such that ξ = o(N|α). Clearly if α < ξ or1602

N|ξ is not gF -whole then Q = N|ξ. So suppose o(N|ξ) = ξ and N|ξ is gF -whole. If ξ is a1603

strong cutpoint of N then Q / Lp(N|ξ) by (c). Assume now that N is reasonably iterable.1604

If ξ is a strong cutpoint of Q, our mouse capturing hypothesis combined with (d) gives that1605

Q / LpΓ(N|ξ). If ξ is an N -cardinal then indeed ξ is a strong cutpoint of Q, since N has1606

only finitely many Woodins. If ξ is not a strong cutpoint of Q, then by definition, we do not1607

have Q/LpΓ(N|ξ). However, using ∗-translation (see [19]), one can find a level of LpΓ(N|ξ)1608

which corresponds to Q.1609

Let Q be a premouse and δ < o(Q), such that Q is a Q-structure for Q|δ. Note that if δ1610

is a cutpoint of Q then δ is a strong cutpoint of Q. For if δ = crit(F ) for some F ∈ E+(Q),1611

then since there is µ < δ such that Q �“µ is < δ-strong, as witnessed by EQ|δ”, then by1612

coherence and the ISC, δ is in fact not a cutpoint, contradiciton. We will use this observation1613

later without explicit mention.1614

Definition 6.24 (Γ-guided). Let P be k-suitable and T ∈ HC be a normal iteration tree1615

on P . We say T is Q-guided iff for each limit λ < lh(T ), Q = Q(T �λ, [0, λ]T ) exists and1616

47Literally we should write “N|(η+)N = LpΓ(N|η)↓t”, but we will be lax about this from now on.
48We could also define a suitable pre mouse N as a Θ-g-organized F-premouse and the proof given below

would work the same.
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Φ(T �λ) ̂ (Q, δ(T )) is (ω, ω1)-iterable. We say that T is Γ-guided iff it is Q-guided and1617

there are iteration strategies in Γ for the phalanxes above. a1618

Remark 6.25. Let P be k-suitable. For a normal tree T on P of limit length there is1619

at most one T -cofinal branch b such that T ̂ b is Q-guided. (Let b0, b1 be distinct such1620

branches; we can successfully compare the phalanxes Φ(T ̂ b0) and Φ(T ̂ b1). Standard fine1621

structure and the fact that P has at most ω-many Woodins then leads to contradiction.)1622

Therefore if T ̂ b is normal, via an ω1-iteration strategy for P , is based on [δPi−1, δ
P
i ) and1623

Q(T , b) exists then T ̂ b is Q-guided.1624

Definition 6.26. Let N be a gF -whole premouse. We write QΓ
t (N ) for the unique Q E LpΓ

+1625

such that Q is a Q-structure for N , if such exists.49
1626

Let k ≤ ω, P be k-suitable and T a normal, limit length, Γ-guided tree on P . We say1627

that T is short iff QΓ
t (M(T )) exists; otherwise that T is maximal. a1628

Definition 6.27. Let P be k-suitable. Let T be an iteration tree on P . We say that T is1629

suitability strict iff for every α < lh(T ):1630

(1) If [0, α]T does not drop then MT
α is k-suitable.1631

(2) If [0, α]T drops and there are trees U ,V such that T �α + 1 = U ̂ V , where U has last1632

modelR, bU does not drop, and there is i ∈ [0, k) such that V is based on [δRi−1, (δ
+ω
i )R),1633

then no Q�MT
α is (i+ 1)-suitable.1634

Let Σ be a (partial) iteration strategy for P . We say that Σ is suitability strict iff1635

every tree T via Σ is suitability strict. a1636

Definition 6.28. Let P be k-suitable. We say that P is short tree iterable iff for every1637

normal Γ-guided tree T on P , we have:1638

(1) T is suitability strict.1639

(2) If T has limit length and is short then there is b such that T ̂ b is a Γ-guided tree.50
1640

(3) If T has successor length then every one-step putative normal extension of T is an1641

iteration tree.1642

Let P be short tree iterable. The short tree strategy ΨP for P is the partial iteration1643

strategy Ψ for P , such that Ψ(T ) = b iff T is normal and short and T ̂ b is Γ-guided. (By1644

6.25 this specifies ΨP uniquely.) a1645

49The “t” is for tame. While Q might not be tame, o(N ) is a strong cutpoint of Q.
50Recall that tree now abbreviates gF-tree.
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Lemma 6.29. Let N be k-suitable.1646

(1 ) Suppose N is short tree iterable. Then ΨN is Γ({N})-definable, and so ΨN ∈M.51
1647

(2 ) Suppose there is a suitability strict normal (ω, ω1)-strategy Σ for N . Then N is short1648

tree iterable and ΨN ⊆ Σ. Moreover, for any T via Σ, T is via ΨN iff for every limit1649

λ < lh(T ), Q(T , b) exists where b = [0, λ]T .1650

Proof. Part (1) follows from the admissibility of M|α.1651

Consider (2). Let T on N be normal, of limit length, via both Σ and ΨN . Let b = Σ(T ).1652

It suffices to show that (a) if Q(T , b) exists then T is short, and (b) if T is short then1653

b = ΨN (T ). (Note that if Q(T , b) does not exist then MT
b is k-suitable so T is maximal.)1654

Consider (a); suppose Q = Q(T , b) exists. If b does not drop then MT
b is suitable and1655

δ 6= δi(M
T
b ) for any i < k. So CΓ(M(T )) �“δ is not Woodin”, so our mouse capturing1656

hypothesis implies that T is short. So suppose that b drops. We can’t have CΓ(M(T )) ⊆ Q,1657

by suitability strictness. If δ is a cutpoint of Q (and so a strong cutpoint) we can then1658

compare Q with LpΓ(M(T )); since the comparison is above δ, we get that Q E LpΓ(M(T )),1659

so T is short. So suppose δ is not a cutpoint of Q. Let E ∈ E+(Q) be least such that1660

κ = crit(E) < δ and let T ′ be the normal tree given by T ̂ 〈b, E〉. Then N T ′ �“κ is a limit1661

of Woodins”, so bT
′

drops and CΓ(M(T )) 6⊆ N T ′ (by suitability strictness). Also N T ′ �“δ1662

is Woodin” and δ is a cutpoint of N T ′ . So N T ′ = QΓ
t (M(T )) exists, so T is short.1663

Consider (b). Since T is short, Q = Q(T , b) exists. We claim that T ̂ b is Γ-guided,1664

which suffices. For it’s easy to reduce to the case that δ is not a cutpoint of Q. Let T ′ be1665

as above, let λ = lh(T ) and α = predT
′
(λ + 1). Let M∗T ′

λ+1 =MT
α |γ. Then MT

α |γ �“κ is a1666

limit of cutpoints”. It follows that T �[α, lh(T )) can be considered an above-κ, normal tree1667

on MT
α |γ, and the iterability of the phalanx Φ(T ) ̂ (Q, δ) reduces to the above-κ iterability1668

of MT
α |γ, which reduces to the above-δ iterability of N T ′ (because of the existence of iT

′

α,λ+1).1669

But N T ′ E LpΓ(M(T )), so we are done.1670

Definition 6.30. Let A ∈ P(R)∩M. We define the phrase T respects A as in [20], except1671

that we also require that T be suitability strict (and making any obvious adaptations to1672

our setting). We define N is normally A-iterable as in [20], except that we also require1673

that N be short tree iterable. Using these definitions, we then define (almost, locally)1674

A-iterable as in [20]. a1675

Lemma 6.31. The analogue of [20, Lemma 1.9.1] holds.1676

51But it seems that we might have ΨN /∈M|α.
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Proof. This is mostly an immediate generalization. The proof in [20] can be run insideMDC1677

(in fact, inside M, since M � DCR). Use suitability strictness to see that, for example, in1678

the comparison of R|0 with N|0 (notation as in [20]), no tree drops on its main branch.1679

Remark 6.32. We make a further observation on the comparison above. Let (T ,U) be the1680

Γ-guided portion of the comparison of, for example, (R|0,N|0). Let λ < lh(T ,U) be a limit;1681

suppose T �λ is cofinally non-padded. So Q = Q(T �λ, [0, λ]T ) exists. Then in fact, δ(T �λ) is1682

a strong cutpoint of Q. For otherwise, by the proof of 6.29, [0, λ]T drops in a manner which1683

cannot be undone; i.e., for all α ≥ λ, [0, α]T drops, a contradiction. Similar remarks pertain1684

to genericity iterations on k-suitable models.1685

Lemma 6.33. Let A ∈ M ∩ P(R). Then for a cone of s ∈ R there is an ω-suitable,1686

A-iterable premouse over s.1687

Proof. The following proof is based on the sketch given in [20, 1.12.1].52 We give a full1688

account here, since the proof is rather involved (it will take several pages) and the possibility1689

of non-tame mice was not covered explicitly in [20]. Moreover, comparing our proof with the1690

remarks in [20, Footnote 12], we will not manage to establish the full Dodd-Jensen property1691

for the iteration strategy we construct, but we will obtain a version of the Dodd-Jensen1692

property which suffices for our purposes.1693

Say that a set of reals constituting a counterexample to the theorem is Γ-bad. Suppose1694

there is a Γ-bad set. For other pointclasses Γ̄ we define Γ̄-bad analogously.1695

Let ζ0 < α and z0 ∈ R and ψF be a Σ1 formula of L−0 such that F�HC is definable over1696

M|ζ0 from z0 andM|(ζ0 +1) � ψF(z0) butM|ζ0 � ¬ψF(z0). Since there is ξ+1 ∈ (θ, l(M))1697

such that M|ξ � ZF, by 5.1 there are ᾱ, ξ̄, β̄ such that ζ0 < ᾱ < ξ̄ < β̄ < α and [ᾱ, β̄] is a1698

gap of M and ΘM|β̄ < ξ̄ and letting Γ̄ = Σ
M|ᾱ
1 , M|ξ̄ � ZF+“There is a Γ̄-bad set A ⊆ R”.1699

Fixing such a set A, note that A really is Γ̄-bad. We may assume that β̄ is least such that1700

there are ᾱ, ξ̄ as above. Then note that β̄ = ξ̄ + 1, ρ
M|β̄
1 = R, p

M|β̄
1 = {ξ̄} and β̄ ends a1701

weak gap ofM (the Σ1 type of ({ξ̄}, z0) does not reflect, using the choice of ζ0, z0). We will1702

show that A is not Γ̄-bad, a contradiction. Let 〈Ai〉i<ω be a self-justifying system at the end1703

of the gap M|β̄, with A0 = A. Since M � AD, in M|ξ̄ there is a cone of reals s such that1704

there is no ω-suitable, A-iterable premouse over s. Let z1 ≥T z0 be a base for this cone, and1705

52We are using g-organized F-mice as our mice over reals. The authors believe that, had we used a
hierarchy Z of mice over reals more closely related to the hierarchy of Θ-g-organized mice, then the proof in
[16, §7] could be adapted to work in the present context. (One needs to define Z such that Θ-g-organized
mice can be realized as derived models of Z-mice, in a reasonably level-by-level manner.) Such a proof would
have the advantage of providing some extra information. However, one would need to define and use the
relevant Prikry forcing, so it seems to be more work overall, and our approach also has the advantage that
it is less dependent on the precise hierarchy of mice over reals that is used. There is also a third approach,
which starts out like [16, §7], and, instead of using Prikry forcing, finishes more like our present proof.
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such that for every i < ω there is ζ < ΘM|β̄ such that Ai is definable overM|ζ from z1. We1706

write Lp for LpΓ̄.1707

Let P / Lp(z1) be least such that P projects to ω and ΣP is not a Γ̄ strategy, where ΣP1708

is the (ω, ω1 + 1)-iteration strategy for P ; by our mouse capturing hypothesis P exists and1709

is super-small.1710

We say that a pointclass Λ is lovely iff Λ = Σ
M|ζ
1 for some ζ < α. Let 〈Γi〉i∈[0,9] be lovely1711

pointclasses such that Γ̄ ⊆ ∆Γ9 and ΣP is ∆Γ9(z1) and for each i ∈ [1, 9], Γi ⊆ ∆Γi−1
. Let T01712

be the tree of a scale for a universal Γ0 set, with T0 ∈ M. By Woodin [24] there is z2 ∈ R1713

such that z1 ≤T z2 and H∗ = HOD
Lξ[T0,z2]
T0,z1

�“∆0 is Woodin”, where ∆0 = ω
Lξ[T0,z2]
2 . (We use1714

here that M|ξ � ZF.)1715

Let Ti, Ui ∈ H∗ be trees projecting respectively to a universal Γi set and its complement.1716

Let ∆i be least such that V H∗
∆i

is Γi-Woodin. Let λ < ξ be large and such that (V H∗

λ ,∆9)1717

is a coarse premouse. Let πH : (H,∆) → (V H∗

λ ,∆9) be elementary, with H countable,1718

πH , H ∈ H∗, and z1, Ti, Ui ∈ rg(π) for each i ≤ 9 (let U0 = ∅). Let πH(THi , U
H
i ) = (Ti, Ui).1719

Then by arguments in [13] (using M|ξ as a background ZF + AD model):1720

Fact 6.34. In M|α there is a unique (ω1, ω1 + 1)-iteration strategy ΛH for (H,∆) such that1721

for each countable successor length tree T via ΛH , letting j = iT and J = N T , then1722

p[j(TH8 )] ⊆ p[T8] & p[j(UH
8 )] ⊆ p[U8].

Moreover, the restriction of ΛH to HCH∗ is the unique πH-realization strategy in H∗. Fur-1723

ther, for i ≥ 1, J �“j(THi ), j(UH
i ) are Col(ω, j(∆))-absolutely complementing”. Moreover,1724

CH = CΓ̄�V
H

∆ ∈ H & j(CH) = CΓ̄�V
J
j(∆);

1725

FH = F�V H
∆ ∈ H & j(FH) = F�iT (FH).

Let C = 〈Nα〉α≤∆ be the maximal fully backgrounded L
gF [E, z1]-construction as com-1726

puted in H. The fact that this construction does not break down follows from 2.34 and 6.34.1727

(For ΛH agrees with the πH-realization strategy. Also, let R,Nα be type 3 and π : Rsq → N sq
α1728

be Σ0-elementary. We may assume that π is cofinal in ν(Nα), by the ISC. It follows that R,1729

and likewise R′ = HullR1 (∅), are iterable inM|α. So R′ / Lp(z1), so R′ is not superstrong by1730

our mouse capturing hypothesis, so R is not superstrong. So 2.34 applies.) Also by 6.34, for1731

every α ≤ ∆ and n < ω, the (n, ω1, ω1 + 1)-strategy for Cn(Nα) given by resurrection and1732

lifting to ΛH , is a (gF -)strategy.1733

Claim 6.35. There is γ < ∆ and k < ω such that ρk+1(Nγ) = ω and Cω(Nγ) is not1734

(k, ω1 + 1)-iterable in M|ᾱ.1735
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Proof. It suffices to see that C reaches P . By the definability of P , P ∈ H∗ and P ∈ H, and1736

letting ΣH
P = ΣP�V H

∆ , we have ΣH
P ∈ H, and ΣH

P is moved correctly by ΛH . It follows that1737

the background extenders used in C all cohere ΣH
P , and so we can apply 4.4 (the stationarity1738

of C with respect to P). So we just need to rule out the possibility that for some normal1739

tree T on P via ΣP , with last model P ′, N∆ E P ′. But because ΣP is a Γ9 strategy and1740

N∆ is definable over V H
∆ , we have T ∈ CΓ9(V H

∆ ). But CΓ9(V H
∆ ) �“∆ is Woodin”, so by the1741

universality of N∆ (see [19, Lemma 11.1]), T /∈ CΓ9(V H
δ ), contradiction.1742

By the previous claim, we may let (γ,m, η) ∈ Ord3 be lexicographically least such that,1743

letting P = Cm(Nγ), η is a gF -whole cutpoint of P and R = HullPm+1(η ∪ pPm+1) is η-sound,1744

and R is not above-η, (m,ω1 + 1)-iterable in M|ᾱ. Let ΣR be the (m,ω1, ω1 + 1)-iteration1745

strategy for R given by resurrection and lifting to ΛH . We take π0 : R → P to be the base1746

lifting map. Let T be on R via ΣR and λ < lh(T ), and let U be the lifted tree on H. Write1747

Cλ = iU0,λ(C). Let n = degT (λ). Write πλ : MT
λ → Pλ for the lifting map; here πλ is a weak1748

n-embedding and Pλ = Cn(NCλ
ξ ) for some ξ ≤ iU0,λ(γ), with ξ = iU0,λ(γ) iff [0, λ]T does not1749

drop in model. (Note that the codomain is iU0,λ(P), not iU0,λ(R), when [0, λ]T does not drop1750

in model.)1751

Given a premouse N and ζ ∈ o(N ), we say that N is (Γ̄, k, ζ)-iterable iff there is an1752

above-ζ, (k, ω1 + 1)-iteration strategy for N in M|ᾱ. We say N is (Γ̄, ζ)-iterable iff N is1753

(Γ̄,m, ζ)-iterable.1754

Claim 6.36. Let T be an above-η normal tree on R via ΣR, of length λ + 1 for a limit λ.1755

Let b = bT and Q = Q(T �λ, b). Let k = ω if Q / MT
λ and k = degT (λ) otherwise. Suppose1756

that the phalanx P = Φ(T �λ) ̂ 〈Q〉 is not normally (k, ω1 + 1)-iterable in M|ᾱ (here k1757

indicates the degree for Q). Let δ = δ(T �λ) and MT = M(T �λ). Then either:1758

(a) δ is a strong cutpoint of Q, Q = MT
λ , bT does not drop in model or degree and1759

Q||(δ+)Q = Lp(MT ); or1760

(b) δ is not a cutpoint of Q, and letting E ∈ EQ+ be such that crit(E) < δ < lh(E), with1761

lh(E) minimal, and letting T + be the normal tree T ̂ 〈E〉, then bT
+

does not drop in1762

model or degree, and Q||lh(E) = Lp(MT ).1763

Proof. Suppose δ is a cutpoint (hence strong cutpoint) of Q. Because δ is a cutpoint, the1764

difficulty in iterating P gives that Q is not (Γ̄, k, δ)-iterable. Because δ is a strong cutpoint1765

and by standard fine structure, Q / Lp(MT ).1766

We leave the proof that Q = MT
λ to the reader; assume this. We show that b does not1767

drop in model or degree; suppose otherwise. Let m′ = degT (λ), so Q = HullQm′+1(δ ∪ pQm′+1).1768

We have (γ′,m′) <lex (iU0,λ(γ),m) where Pλ = Cm′(N
Cλ
γ′ ). We have pPλm′+1 = πλ(p

Q
m′+1) and the1769
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m′ + 1-solidity witnesses for (Pλ, pPλm′+1) are in rg(πλ). (The latter is by the commutativity1770

between the copy and iteration maps.) But1771

rg(πλ) ⊆ P̄ = HullPλm′+1(πλ(δ) ∪ pPλm′+1).

Therefore P̄ is πλ(δ)-sound. Moreover, we have a weak m′-embedding σ : Q → P̄ such that1772

σ(δ) = πλ(δ). So σ lifts above-δ trees on Q to above-σ(δ) trees on P̄ . Therefore P̄ is not1773

(Γ̄,m′, πλ(δ))-iterable. This contradicts the minimality of (iU0,λ(γ),m) in MU
λ .1774

So bT does not drop. An argument similar to the preceding one gives that Q||(δ+)Q ⊆1775

Lp(MT ). Suppose that Q||(δ+)Q ∈ Lp(MT ). Let Q′ / Lp(MT ) be such that Q′||(δ+)Q
′

=1776

Q||(δ+)Q and Q′ projects to δ. Now Q′↓z1 is δ-sound. For let n < ω be such that ρQ
′

n+1 =1777

MT 6= ρQ
′

n . Then Q′↓z1 is n-sound, and pQ
′

n+1 is (n+ 1)-solid for Q′↓z1, and1778

Q′ = HullQ
′

n+1(pQ
′

n+1), (6.5)

and so it suffices to see that Q′ = K where1779

K = HullQ
′↓z1

n+1 (δ ∪ pQ′n+1).

By line (6.5), it suffices to see that δ ∈ K. But if not then δ = crit(π) where π is the1780

uncollapse embedding, but since δ is Woodin in Q, this implies that δ is not a cutpoint of1781

Q, a contradiction. So comparing Q with Q′↓z1, we get Q = Q′↓z1. So Q is (Γ̄, δ)-iterable,1782

a contradiction.1783

Now suppose δ is not a cutpoint of Q. Suppose that bT
+

drops in model or degree. Since1784

δ is a strong cutpoint of N T +
, then as before, by choice of (γ,m), N T +

is (Γ̄, j, δ)-iterable,1785

where j = degT
+

(N T +
). Therefore, letting κ = crit(E) and lh(T +) = ξ+1, M∗T +

ξ is (Γ̄, j, κ)-1786

iterable (we can copy trees using iE). But κ is a cutpoint of M∗T +

ξ . So T + = (T �χ+ 1) ̂ T ′,1787

where χ = predT (ξ) and T ′ is an above-κ, j-maximal tree on M∗T +

ξ . Thus, the iterability of1788

P can be reduced to that of M∗T +

ξ above κ. Therefore P is iterable inM|ᾱ, a contradiction.1789

So bT
+

does not drop. We then get Q||lh(E) = Lp(MT ) by the arguments just given.1790

Let T be an above-η normal tree on R, of limit length. Let b be a T -cofinal branch. We1791

say that b is Γ̄-verified for T iff Φ(T ) ̂ 〈Q〉 is normally (k, ω1 + 1)-iterable inM|ᾱ, where1792

Q = Q(T , b) and if Q /MT
b then k = ω and if Q = MT

b then k = degT (b).1793

Claim 6.37. Let T be as above. Then there is at most one branch Γ̄-verified for T . However,1794

the following partial strategy Ψ is not an above-η, (m,ω1 + 1)-strategy for R: Given T , let1795

Ψ(T ) be the unique branch which is Γ̄-verified for T .1796
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Proof. Uniqueness follows from the usual comparison and fine structural arguments, using1797

the η-soundness of R. Suppose existence holds. Then by uniqueness and because M|ᾱ is1798

admissible, R is (Γ̄, η)-iterable, contradiction.1799

Definition 6.38. We define the term Γ̄-k-suitable analogously to k-suitable (cf. 6.23), but1800

with Γ̄ replacing Γ. We likewise define Γ̄-A-iterable and Γ̄-suitability strict. Let R be1801

Γ̄-ω-suitable with z1 ∈ R. Then σRi denotes the Col(ω, δRi )-term capturing Ai over R (see1802

[13]). Let Q be a structure and π : Q → P . We say that π is an ~A-embedding iff π is1803

Σ1-elementary and σRi ∈ rg(π) for all i < ω. a1804

Claim 6.39. (i) Nγ has infinitely many Woodins in the interval (η, ρm(Nγ)). Let δω be the1805

supremum of the first ω-many and let N = (Nγ|δω)↓(Nγ|η). Then (ii) N is Γ̄-ω-suitable.1806

Proof. We will construct a Γ̄-ω-suitable premouse which is an initial segment of a ΣR-iterate1807

of R. This is by applying Claim 6.37 and an obvious generalization thereof, in tandem1808

with Claim 6.36, up to ω many times. So let T0 on R0 = R be via ΣR (so above δ−1 = η),1809

witnessing the failure of “existence” in Claim 6.37, with T0 of minimal length. Let δ0 = δ(T0).1810

Let b = Σ(T0). So Claim 6.36 applies to Φ(T0) ̂ 〈Q(T0, b)〉. We use notation as there, so1811

write T = T0 ̂ b and δ = δ0.1812

Suppose first that conclusion (b) of Claim 6.36 holds. Let κ = crit(E). Since E overlaps1813

δ and bT
+

does not drop in model or degree, N T +
has at least κ-many Woodins < δ, and1814

δ < ρm(N T +
). And N T +

is not (Γ̄, δ)-iterable. Now let δ∗ω be the supremum of the first ω-1815

many Woodins of N T +
above η. Let ζ be least such that δ∗ω < lh(ETζ ). So N T +|δ∗ω = MT

ζ |δ∗ω.1816

Note that δ∗ω is a strong cutpoint of MT
ζ and ζ ∈ bT +

, and so [0, ζ]T does not drop in model1817

or degree. Therefore MT
ζ is not (Γ̄, δ∗ω)-iterable. Now let U be the lifted tree, via ΣH , on1818

H. We have Pζ = iU0,ζ(Cm(Nγ)) and πζ(δ
∗
ω) < ρm(Pζ) and πζ(δ

∗
ω) is the sup of the first ω1819

Woodins of Pζ above η, and Pζ is not (Γ̄, πζ(δ
∗
ω))-iterable. By the elementarity of iU0,ζ , this1820

gives (i), and (∗) P = Cm(Nγ) is not (Γ̄, δω)-iterable.1821

We now verify condition (c) of Γ̄-ω-suitability (cf. 6.23). Let κ be a cutpoint of P|δω1822

with η ≤ κ. Let Cκ be the κ-core of P . We claim that (∗∗) Cκ is not (Γ̄, κ)-iterable. For1823

we have π0 : R → P is the core map. Let κ̄ ∈ o(R) be least such that π0(κ̄) ≥ κ, and let1824

π0(δ̄ω) = δω.1825

Suppose π0(κ̄) = κ. Let ξ be least such that iT
+

(κ̄) < lh(ETξ ). Then MT
ξ is not1826

(Γ̄, iT0,ξ(κ̄))-iterable because iT0,ξ(κ̄) is a cutpoint of MT
ξ , and MT

ζ is not (Γ̄, δ∗ω)-iterable. But1827

then since MT
ξ is iT0,ξ(κ̄)-sound, iU0,ξ(Cκ) is not (Γ̄, iU0,ξ(κ))-iterable, which gives (∗∗).1828

Now suppose π0(κ̄) > κ. Let ξ be least such that κ′ = sup iT
+

“κ̄ < lh(ETξ ). Then ξ ∈ bT +
1829

and κ′ ≤ crit(iT
+

ξ,bT+ ). One can show that πξ(κ
′) > iU0,ξ(κ); and πξ ◦ iT0,ξ“κ̄ ⊆ iU0,ξ(κ). Therefore1830

κ′ is a cutpoint of MT +

ξ ; and MT +

ξ is κ′-sound. Now argue much as before, giving (∗∗).1831
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Now let κ be a gF -whole strong cutpoint of P|δω. Let Cκ+1 be the (κ+ 1)-core of P . By1832

(∗∗), the choice of γ and universality for premice over P|κ, we have1833

P|(κ+)P = Pκ+1|(κ+)Pκ+1 = Lp(P|κ).

This gives condition (c) of Γ̄-ω-suitability.1834

It remains to verify condition (d). So let ξ < δω with ξ ≥ η and ξ not Woodin in P ; we1835

must show that CΓ̄(P|ξ) �“ξ is not Woodin”. We may assume that P|ξ is gF -whole, and1836

by condition (c), also that ξ is not a strong cutpoint of P . Let F ∈ EP be least such that1837

µ = crit(F ) ≤ ξ < lh(F ). Note that by coherence and the ISC, µ is a limit of cutpoints1838

of P|ξ. So if µ = ξ then P|ξ is the Q-structure for ξ, so we are done. So suppose µ < ξ.1839

We may assume that P||lh(F ) �“ξ is Woodin”, because otherwise there is Q / P||lh(F )1840

such that Q is a Q-structure for ξ and ξ is a strong cutpoint of Q, and so Q / Lp(P|ξ) (by1841

resurrection and the choice of γ). Therefore µ is not a cardinal of P . Let Q / P be least1842

such that lh(F ) ≤ o(Q) and ρQω < µ. Then Q collapses ξ. Let ζ ∈ [ρQω , µ) be a gF -whole1843

strong cutpoint of Q. Then Q E Lp(P|ζ), so Q ∈ CΓ̄(P|ξ), which suffices. This completes1844

the proof that P|δω is Γ̄-ω-suitable in this case.1845

Now suppose that conclusion (a) of Claim 6.36 holds. Let T +
0 = T0 ̂ 〈b〉 and let R1 =1846

N T +
0 . Then bT

+
0 does not drop in model or degree. And δ0 is a strong cutpoint of R1, R11847

is δ0-sound, projects < δ0, and is not (Γ̄, δ0)-iterable. So the obvious modification of Claim1848

6.37 applies to R1 above δ0. Pick T1 on R1, above δ0, like before. Again apply Claim 6.36.1849

If its conclusion (b) holds proceed as before, and otherwise let R1 = N T +
1 and pick T2 on1850

R1, etc.1851

If the above process producesRn and Tn for all n < ω, then we get (i) much as before, and1852

note that, letting δn be the nth Woodin of P = Cm(Nγ) above η, then P is not (Γ̄, δn)-iterable.1853

Part (ii) follows much like before.1854

Claim 6.40. Let P be Γ̄-ω-suitable and let π : Q → P be an ~A-embedding. Then (i) Q is1855

Γ̄-ω-suitable and for each i < ω, (ii) π(σQi ) = σPi , and (iii) rg(π) is cofinal in δNi .1856

Proof. Parts (i) and (ii) are by condensation of term relations for self-justifying-systems; see1857

[13]. Consider (iii). If rg(π)∩δPi is bounded in δPi , then we may assume that crit(π) = δQi , by1858

taking the appropriate hull (cf. the first part of the proof of [20, Lemma 1.16.2]). But then1859

Q|δQi = P |δQi , and P |δQi is not Γ̄-Woodin, but Q �“δQi is Woodin”, so Q is not Γ̄-ω-suitable,1860

contradiction.1861

Definition 6.41. Let T = 〈Tα〉α≤γ be a stack of normal iteration trees. We say that T1862

is relevant iff for every α < γ, bTα does not drop. (Here we allow Tγ to be trivial, and1863
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it might drop.) The term relevantly-(ω, ω1, ω1 + 1)-iteration strategy is defined as is1864

(ω, ω1, ω1 + 1)-iteration strategy, except that the former only acts on relevant trees. a1865

From now on we fix N as defined in Claim 6.39. Let ΣN be the relevantly-(ω, ω1, ω1 + 1)1866

strategy for N given by resurrection and lifting to ΛH . The next claim follows from 6.34.1867

Claim 6.42. For any successor length tree U on H via ΛH , iU(N) is Γ̄-ω-suitable and1868

iU�N : N → iU(N) is an ~A-embedding.1869

Claim 6.43. ΣN is Γ̄-suitability strict. Moreover, let T be via ΣN , of successor length, such1870

that bT does not drop. Then iT is an ~A-embedding.1871

Proof. Let T be via ΣN , of successor length. If bT does not drop, then the lemma’s conclu-1872

sions regarding N T and iT follow from 6.40 and 6.42.1873

Suppose bT drops and that i < ω is as in 6.27(2), but some R E N T is Γ̄-(i+ 1)-suitable.1874

For simplicity assume that T consists of just one normal tree and that T has minimal possible1875

length. It follows that for every extender E used in T , ν(E) < δ = δRi . Let n = degT (bT ).1876

Then ρn+1(N T ) < o(R) and N T is δ-sound. So let Q E N T be least such that R E Q and1877

ρQω ≤ δ. So R|(δ+)R = LpΓ̄(R|δ) = Q|(δ+)Q. Also Q �“δ is Woodin” and Q is δ-sound and1878

δ is a strong cutpoint of Q (because η is a strong cutpoint of N). So letting j < ω be such1879

that ρQj+1 ≤ δ < ρQj , Q is not (Γ̄, j, δ)-iterable. Let U be the ΛH-tree on H given by lifting1880

T . Let J be the last model of U . Let α ∈ o(J) and π : N T → Cn(N
iU (C)
α ) be the lifting map.1881

Then using π and resurrection in J , and by choice of γ, we get that Q is (Γ̄, j, δ)-iterable,1882

a contradiction. (Suppose N T is type 3. If ν(E(N T )) < o(Q) < o(N T ) then let E∗ ∈ J1883

be a background extender for N
iU (C)
α and lift Q to a model in Ult(J,E∗). If Q = N T then1884

δ < crit(EQ) so there is no problem.)1885

Definition 6.44. Let Q be Γ̄-ω-suitable. Let Σ be a relevantly-(ω, ω1, ω1) iteration strategy1886

for Q. We say that (T , P ) is a Σ-pair iff T is a countable tree on Q via Σ, with last model1887

P . We say that a Σ-pair (T , P ) is non-dropping iff bT does not drop. We say that Σ is ~A-1888

good iff for every non-dropping Σ-pair (T , P ), P is Γ̄-ω-suitable and iT is an ~A-embedding.1889

If (T , P ) is a non-dropping Σ-pair, we write ΣTP for the (T , P )-tail of Σ (that is, ΣTP is the1890

relevantly-(ω, ω1, ω1 + 1) iteration strategy Λ for P where Λ(U) = Σ(T ,U)). a1891

The following claim is immediate:1892

Claim 6.45. Let Σ be a relevantly-(ω, ω1, ω1 + 1)-iteration strategy for Q. Let (T , P ) be a1893

non-dropping Σ-pair. If Σ is suitability strict then ΣTP is suitability strict. If Σ is ~A-good1894

then ΣTP is ~A-good.1895
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Claim 6.46. Let Q be Γ̄-ω-suitable. Then there is at most one suitability strict ~A-good1896

relevantly-(ω, ω1, ω1 + 1) iteration strategy for Q.1897

Proof. Let Σ,Λ be two such strategies, and let T be of limit length, via Σ,Λ, such that1898

b = Σ(T ) 6= Λ(T ) = c. We may assume that T is normal. We can compare the phalanx1899

Φ(T ) ̂ b with the phalanx Φ(T ) ̂ c, forming trees U ,V , using Σ,Λ, respectively. The1900

comparison is successful. By suitability strictness, we have N U = P = N V . By standard1901

fine structure, bU and bV do not drop and N U �“δ(T ) is Woodin”. In particular, δ(T ) = δPk1902

for some k < ω. Because Σ,Λ are ~A-strategies and by 6.40, therefore rg(iU) ∩ rg(iV) is1903

unbounded in δPk . But then rg(iTb )∩ rg(iTc ) is unbounded in δPk , so b = c. Contradiction.1904

We are now in a position to establish a version of the Dodd-Jensen property.1905

Claim 6.47. Let Σ be an ~A-good, suitability strict strategy for Q. Let (T , P ) be a non-1906

dropping Σ-pair.1907

(1 ) Let π : R → P be an ~A-embedding. Then the π-pullback Λ of ΣTP is ~A-good and1908

suitability strict. Therefore if R = Q then Λ = Σ.1909

(2 ) Let π : Q→ P be an ~A-embedding. Then for all α < o(Q), iT (α) ≤ π(α).1910

Proof. The first clause of (1) is proven like 6.43. This together with 6.46 yields the second1911

clause. For (2), the standard proof of the Dodd-Jensen property applies; the copying does1912

not break down by (1).1913

One can now deduce that N is Γ̄-A-iterable, because 6.45 and 6.47 apply to N and ΣN ,1914

which is enough of the Dodd-Jensen property for ΣN to apply the proof of [14, Theorem1915

4.6]. Let g ⊆ Col(ω,N|η) be N -generic. Let x ∈ R ∩ N|(η + 1)[g] code (N|η, g). Then1916

we can reorganize N [x] as a premouse N∗ over x, and N∗ is Γ̄-ω-suitable and Γ̄-A-iterable;1917

these facts all follow by S-construction.53 But x ≥T z1, contradicting the choice of z1. This1918

completes the proof of 6.33.1919

Now for simplicity assume n = 1 and β = l(M) is a limit ordinal; we allow that XM 6= ∅.1920

Let p, w1,W,Σ, 〈βi, Yi, ψi〉i<ω be as in the proof of 6.9. Claim 6.12 holds. Let z = w1, G = p,1921

X = XM, and U,U ′ the trees of the scales as in 4.22. Define the language1922

L = L0 ∪ {β̇i,Ṁi}i<ω ∪ {Ġ, ṗ, Ẇ , ż, Ẋ, U̇ , U̇ ′};
53S-construction for g-organized F-premice; cf. 5.5. Now N↓(N |η) is a premouse over N |η. Using S-

construction we can translate back and forth between premice P over N |η and premice P ∗ over x, where P ∗

is a reorganization of P [x], and iterates of P correspond to iterates of P ∗, with iteration maps agreeing over
P .

67



each symbol in L\L0 is a constant symbol. Relative to these definitions, let B0, 〈Bi
0〉i<ω and1923

~S = 〈Si〉i<ω be as in [20]. The analogue of [20, Corollary 1.14] holds (since 〈Si〉i<ω ∈ J1(M),1924

its proof works inMDC; thus, the resulting iterateN is inM). Regarding [20, Lemma 1.15.1],1925

see [9] for details on the process of interleaving comparison with genericity iteration.54 Also,1926

in the proof of [20, Lemma 1.15.1], with notation as there, instead of demanding π : H → Vγ1927

we can make do with π : H → Z where Z ∈ B is transitive and sufficiently large, where F1928

is over B (and thus we can find such π,H). We need to prove the following:1929

Lemma 6.48. Let N be ω-suitable and ~S-iterable. Let π : Q → N be Σ1-elementary with1930

τNi,j ∈ rg(π) for all i, j < ω. Then there is some m < ω such that for all n ≥ m, rg(π) is1931

cofinal in δNn .1932

Proof. The proof mostly follows that of [20, 1.16.2]. But consider the proof of its Claim; we1933

adopt the same notation. Within that proof, consider the proof that M∗ = M̄. We prove1934

this, as things are different here. Let X∗, U∗, etc, be ẊM
∗
, U̇M

∗
, etc. Let X̄ be XM̄, etc.1935

Let X− = XM
−

, etc.1936

First note that X∗ = X ∩M∗ = X̄, for ρ− ◦ ψ∗ yields order-preserving maps U∗ → U1937

and U ′∗ → U ′. Therefore aM
∗

= aM̄. So essentially as in the proof of 6.9, M∗ is a 1-sound1938

J -model over aM̄ with ρ1(M∗) = RM∗ and pM
∗

1 = p.1939

Because ρ∗ ◦ ψ∗ : H∗ → H is Σ1-elementary, and by 4.19, H∗ is a (0, ω1 + 1)-iterable1940

g-organized F -premouse over TM
∗

(in V ). Likewise for HM∗|η for every η such that M∗|η1941

is relevant. So M∗ is a (0, ω1 + 1)-iterable Θ-g-organized F -premouse over XM̄.1942

So we can compareM∗ with M̄. Because they are both 1-sound and minimal for realizing1943

Σ, they are equal.1944

We modify the statement of [20, Lemma 1.20.1] as follows: Let Q be ω-suitable, j-sound1945

and j-realizable. We claim that with respect to trees above δQj−1, Q is short tree iterable, and1946

the conclusions of [20, Lemma 1.20.1] hold, except with (a)(ii) replaced by “Q-to-P drops”,1947

and (b)(ii) replaced by “b drops and T ̂ b is Γ-guided”. Let us argue that Q is short tree1948

iterable above δQj−1. Assume j = 0 for simplicity. First note that whenever π : Q → N is a1949

0-realization, the π-pullback (ΨN )π of the short tree strategy ΨN for N is suitability strict.1950

To see this argue like in the proof of 6.43. Then, as in the proof of 6.29, it follows that (ΨN )π1951

is precisely the short tree strategy for Q. This suffices. Now consider the uniqueness of the1952

branch b described in [20, Lemma 1.20.1](b) (as modified above). Given two such branches1953

b, c, we compare the phalanxes Φ(T ̂ b),Φ(T ̂ c), producing trees U ,V . If T is short then1954

54The issue is as follows. Let T be one of the trees involved in the comparison. Let α < lh(T ); it might be
that [0, α]T drops. But then the usual procedure for choosing the least extender on E+(MTα ) producing a
bad extender algebra axiom need not make sense, because in fact, the relevant extender algebra is not even
in MTα .
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note that both T ̂ b and T ̂ c are Γ-guided, so b = c. If T is maximal then b, c cannot1955

drop; rule out the possibility that, for example, N U /N V and bV drops, by using suitability1956

strictness.1957

Let Σ,Q, (F,≺∗),Q∞ be defined as in [20, §2].55 Note that Σ, (F,≺∗) ∈ MDC. We have1958

the analogue of [20, Lemma 2.1.2], but we mention some points. First, we don’t quite need1959

that Q∞ is fully wellfounded for the proof; it suffices thatMDC �“Q∞ is wellfounded in the1960

codes”. But because MDC need not have many ordinals beyond M, it seems possible that1961

Q∞ be illfounded. However, standard arguments show that Q∞|δQ∞0 is wellfounded (in fact1962

δQ∞0 ≤ ΘM). The latter is enough for the scale construction to go through. The rest of the1963

argument is essentially as in [20]. This completes the proof.1964

6.5 Scales analysis within core model induction1965

We finish by explaining how we use the scale existence theorems in application to the core1966

model induction. In such application, F will not just be nice, but very nice.1967

Definition 6.49. Let F be an operator over B. We say that F is very nice iff F is nice1968

and R ∈ B and letting N = J1(HC,F�HC), N � AD and every set of reals in N has a scale1969

in N . a1970

Remark 6.50. Let F be very nice. Let z ∈ R be such that there are scales on F cd and1971

R\F cd which are analytical in (F cd, z). Let X = F ∪ {z}. Then using the scales existence1972

theorems 6.1, 6.16, 6.20 together with 6.8, we get the scales analysis for Lp
GF(R, X) from1973

optimal determinacy and super-small mouse capturing hypotheses. This gives the scales1974

analysis for Lp
GF(R,F�HC), as required. (Note that at passive segments the scales are1975

Σ1(z), maybe not Σ1.)1976

We have dealt with Lp
GF(R,F�HC) instead of Lp

GF(R), because we seem to need extra1977

assumptions to obtain the scales analysis from optimal assumptions in the latter. We now1978

discuss what we need for this. In application, if there are no divergent AD pointclasses, F1979

will in fact be extremely nice.1980

Definition 6.51. Let Γ˜ be a boldface pointclass and X ⊆ R. We say that Γ˜ is an AD-1981

pointclass iff AD holds with respect to all sets in Γ˜. We say that Γ˜, X are Wadge com-1982

patible iff A,X are Wadge compatible for every A ∈ Γ˜.1983

Let F be an operator. We say that F is extremely nice iff there is X ⊆ R F is very1984

nice, F�HC is projectively equivalent to X, and for every AD-pointclass Γ˜, Γ˜, X are Wadge1985

compatible. a1986

55We use “F” where [20] uses “F” to avoid conflicts of notation.
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Remark 6.52. Let F be an extremely nice operator. We want to see that the scales analysis1987

in Lp
GF(R) proceeds from optimal determinacy assumptions. Let N /Lp

GF(R) be such that1988

N � AD and N ends a gap [α, β] of Lp
GF(R), such that [α, β] is not strong. Suppose that if1989

[α, β] is weak and F�HC ∈ N|α then super-small mouse capturing for Γ = Σ
N|α
1 holds on a1990

cone. We claim that one of the scale existence theorems 6.1, 6.9, or 6.20 applies.1991

For by 6.8 and the mouse capturing hypothesis, we may assume that the gap is admissible,1992

and so weak, and that F�HC /∈ N|α, so X /∈ N|α. We claim that then J1(N ) � AD, so 6.91993

applies. If every set of reals in J1(N ) is Wadge belowX, this is because J1(HC,F�HC) � AD.1994

So suppose otherwise. Let P E N be least such that there is a set Z ∈ J1(P) such that1995

Z 6≤W X. If P / N then J1(P) � AD, so by the Wadge compatibility given by 6.51,1996

we have F�HC ∈ J1(P), so α ≤ l(P). We claim that F�HC /∈ N|β. Because F is1997

extremely nice and by 6.6, this is clear if Th
N|α
rΠ1
≤W X or Th

N|α
rΣ1
≤W X. Otherwise,1998

by Wadge compatibility, X <W Th
N|α
rΣ1

. But then because N|α is admissible, X ∈ N|α,1999

so F�HC ∈ N|α, contradiction. So P = N . Since N ends a weak gap, there are sets2000

Xi ∈ P(R) ∩N such that P(R) ∩ J1(N ) is exactly the sets which are projective in ⊕i<ωXi.2001

It follows that P(R) ∩ J1(N ) ⊆ P(R) ∩ J1(R, X), so J1(N ) � AD (and so X ∈ J1(N )).2002

A Operator condensation2003

Our use of 2.28 (i.e., condenses finely) overcomes a problem which arises with the notion2004

of condenses well from [23, 2.1.10] when it is used in concert with other definitions in [23].2005

(Condenses well also appeared in early versions of [15], in the same form.) In this appendix2006

we illustrate this problem. All definitions and notation here are following [23, §2].2007

Let J be the function x 7→ J2(x). Clearly J is a mouse operator (see [23, 2.1.7]). Let2008

F = FJ (see [23, 2.1.8]). Then we claim that F does not condense well (contrary to [23,2009

2.1.12]). We verify this.2010

Clearly regular premice M whose ordinals are closed under “+ω” can be arranged as2011

models M̃ with parameter ∅ (see [23, 2.1.1]), such that for each α < l(M̃), M̃|α + 1 =2012

F (M̃|α).2013

Now let M be a premouse such that for some κ < o(M), κ is measurable in M, via2014

some measure on E = EM, and M �“λ = κ+κ exists”, ρMω = λ, and M = J1(M0) where2015

M0 = J E
λ . LetM∗ = J1(M̃0), arranged as a model with parameter ∅ extending M̃0. Note2016

that because ρMω = λ = ρ(M0), we have M̃0 ∈ M∗ ∈ F (M̃0). Also, l(M∗) = λ + 1 and2017

(M∗)− = M̃0 (see [23, 2.1.3]). (Thus, we can’t say M∗ = M̃, because M̃ is not defined.)2018

Let E ∈ EM be M-total with crit(E) = κ. Let N = Ult0(M, E) and π = iE. Then2019

ρN1 = sup π“λ < π(λ). Let N0 = π(M0) and N ∗ = J1(Ñ0), arranged as a model with2020
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parameter ∅ extending Ñ0. Then ρ1(N ∗) < π(λ) = ρ(Ñ0), and therefore N ∗ = F (Ñ0).2021

But π : M∗ → N ∗ is a 0-embedding (and π(M̃0) = Ñ0). Since M∗ 6= F (M̃0), F does2022

not condense well (see [23, 2.1.10(1)]). (Note also that by using Ult1(M, E) in place of2023

Ult0(M, E), we would get that π is both a 0-embedding and Σ2-elementary, so even this2024

hypothesis is consistent with having M∗ 6= F (M̃0).)2025

The preceding example seems to extend to any (first-order) mouse operator J such that2026

for all x, J1(x) ∈ J(x).2027

B Strategy premice2028

Our definition of Σ-premouse (for a strategy Σ with hull condensation) differed a little from2029

the standard one. The standard one is along the lines of: given M|α, letting T ∈ M|α be2030

the <M|α-least tree for which M|α does not know Σ(T ), and ωλ = lh(T ), let M|(α+ λ) =2031

(Jλ(M|α), B), where B ⊆ ωα + ωλ codes Σ(T ) amenably.2032

We need that an ultrapower of a Σ-premouse is also a Σ-premouse. As has been observed2033

by others, this is not true of the hierarchy described above. For suppose M|α, T and λ are2034

as above, and lh(T ) has measurable cofinality κ in M|(α + λ), and E is an extender over2035

M =M|(α + λ) with crit(E) = κ. Then U = Ult0(M, E) is not in the hierarchy. For iE is2036

discontinuous at lh(E), but o(U) = sup iE“o(M).2037

There seem to be two natural attempts to correct this problem. One is to feed in all2038

initial segments of Σ(T ) (even though they have been fed in earlier), immediately prior to2039

feeding in Σ(T ) itself. But this approach seems flawed. For (∗) let M′ be a structure in2040

this hierarchy, with BM
′ 6= ∅, but BM

′
coding a branch which is not T ′-cofinal (for the2041

relevant tree T ′). So BM
′

codes [0, ωγ′]T ′ for some ωγ′ < lh(T ′). Let π : M → M′ be2042

fully elementary. Then clearly BM codes [0, ωγ]T where π(T ) = T ′ and π(γ) = γ′, and2043

ωγ < lh(T ). But we need that [0, ωγ]T ⊆ Σ(T ), and this is not clear (even though Σ has2044

hull condensation).2045

The other correction, which is better, is to simply not feed in Σ(T ) in the case that lh(T )2046

has measurable cofinality inM|(α+ λ) (as witnessed by some measure on EM). For by the2047

argument in 3.11, M already has Σ(T ) as an element, and there is a uniform procedure2048

which M can use to determine it.2049

Thus, one must show that the relevant ultrapowers and substructures of models in the2050

resulting hierarchy are also in the hierachy. It is easy to see that ultrapowers preserve the2051

relevant first-order properties. Given that we also have a weak 0-embedding realizing the2052

ultrapower into some structure in the hierarchy, then Σ itself will also be preserved (by hull2053

condensation).2054
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So let M′ be a Σ-premouse and let π : M→M′ be a weak 0-embedding. We want to2055

know that M is a Σ-premouse. We just need to verify the first-order properties.2056

We need to rule out the possibility that BM = ∅ (and therefore BM
′

= ∅), but there is2057

some B 6= ∅ such that (M, B) is a Σ-premouse. Let T ∈ M be the relevant tree (with B2058

coding Σ(T )). Because π is a weak 0-embedding, this implies that T ′ = π(T ) is the least2059

tree for whichM′ does not know Σ(T ′), and π is discontinuous at lh(T ). Suppose also that2060

M = C1(M′) and π is the core map, and M′ is (0, ω1, ω1 + 1)-iterable. Then by the usual2061

proof of solidity (with a little extra argument to deal with the possibility that M is not2062

a Σ-premouse), M and M′ are 1-solid and π(pM1 ) = pM
′

1 , and then using the comparison2063

argument in the proof of universality, and the commutativity of π with the resulting iteration2064

embeddings, one gets that lh(T ) has measurable cofinality inM, and thereforeM is in fact2065

a Σ-premouse, contradiction. (For the higher degree core maps, the present situation cannot2066

arise, just by elementarity.)2067

Now suppose that BM
′ 6= ∅. It is easy to see that BM codes some branch b through T ,2068

and that BM∩M is cofinal in o(M) (by the Σ1-elementarity of π on a set cofinal in o(M)).2069

But b need not be T -cofinal. (For example, if o(M′) has uncountable cofinality, it is easy to2070

find N /M such that letting M = (N , BM′ ∩N ) and π = id, then π :M→M′ is a weak2071

0-embedding, and T = T ′.) If we have that π is Σ1-elementary on a set X ⊆ o(M) which is2072

both cofinal in o(M) and cofinal in lh(T ), then b will be cofinal in T .2073

These arguments give that the models produced in an L[E,Σ]-construction will all be2074

Σ-mice, as long as iterates of countable elementary substructures are realizable back into2075

models of the construction, in the usual manner. But we opted for the hierarchy for Σ-2076

premice defined in §3 because it has stronger condensation properties, and without assuming2077

any iterability.2078

We make one more remark regarding strategy premice. It seems that one might try to2079

define strategy premice over non-wellordered sets a by feeding in branches bx for multiple2080

trees Tx simultaneously, thus avoiding the need to select a single tree T . However, we do not2081

see how to arrange this in such a manner that the branch predicate B is always amenable.2082

For example, suppose our supposed strategy premouse is a J -model N over R, and N|η is2083

given, and we have identified, for each x ∈ R, a tree Tx ∈ N|η, and now we want to feed2084

in bx = Σ(Tx), simultaneously. Let’s say we have arranged that λ = lh(Tx) is independent2085

of x. Then we can easily knit together the predicates used to define B(N|η, Tx, bx), as x2086

ranges over R. Let M be the resulting structure and let B = BM. For B to be amenable,2087

for each α < λ, we must have that the function Bα is in M, where Bα(x) = bx ∩ α. But it2088

seems that even B2 could contain non-trivial information, and maybe B2 /∈ M; note that2089

essentially, B2 ⊆ R. Even if the sets Bα could be added amenably, it seems that the problems2090
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described in (∗) above would be an obstacle to proving that the resulting hierarchy has nice2091

condensation.2092
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