William Cherry | Department of Mathematics

William Cherry

Associate Professor
GAB 405
Office Hours: 
MTWR, 4pm-5:30pm; F, 10am-12pm (except June 21st will be 9am-11am)
Complex analysis/geometry, number theory, p-adic analysis/geometry

Research Interests

I have done work that can be considered complex analysis, number theory, and algebraic geometry. I am especially interested in connections between rational solutions and functional solutions to systems of algebraic equations. For instance, consider the equation of the unit circle,x2+y2=1. This equation has many rational solutions, such as (3/5)2+(4/5)2=1, coming from Pythagorean triples. The unit circle equation also has the "functional solution" (sin t)2+(cos t)2=1. On the other hand, if n>3, then xn+yn=1 has only a few rational solutions (this is Fermat's Last Theorem/Wiles's Theorem or the Mordell Conjecture/Faltings's Theorem, depending on what one means by "few" and "rational"). Similarly,xn+yn=1 has no non-constant "entire function" solutions -- this follows easily from, for instance, the Uniformization theorem. One area I often work in is a field called "p-adic" analysis. Working with functions of p-adic numbers is sort of halfway in between algebra and analysis, so the idea is it might help us understand how functional solutions are related to rational solutions. Another area I work in is Nevanlinna theory, which extends the Fundamental Theorem of Algebra to meromorphic functions. Finally, I have research interests in classical complex analysis, particularly using geometric methods to better understand various inequalities.